【題目】拋物線的焦點(diǎn)為,已知點(diǎn)為拋物線上的兩個動點(diǎn),且滿足.過弦的中點(diǎn)作拋物線準(zhǔn)線的垂線,垂足為,則的最大值為( )

A. B. C. D.

【答案】A

【解析】

設(shè)|AF|=a,|BF|=b,連接AFBF.由拋物線定義得2|MN|=a+b,由余弦定理可得|AB|2=(a+b2ab,進(jìn)而根據(jù)基本不等式,求得|AB|的取值范圍,從而得到本題答案.

設(shè)|AF|=a,|BF|=b,連接AF、BF

由拋物線定義,得|AF|=|AQ|,|BF|=|BP|

在梯形ABPQ中,2|MN|=|AQ|+|BP|=a+b

由余弦定理得,

|AB|2a2+b2﹣2abcos120°=a2+b2+ab

配方得,|AB|2=(a+b2ab

又∵ab

∴(a+b2ab≥(a+b2a+b2a+b2

得到|AB|a+b).

所以,即的最大值為

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱中,側(cè)面是正方形, 側(cè)面, ,點(diǎn)的中點(diǎn).

(1)求證: //平面;

(2)若,垂足為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓 的離心率為,兩條準(zhǔn)線之間的距離為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)已知橢圓的左頂點(diǎn)為,點(diǎn)在圓上,直線與橢圓相交于另一點(diǎn),且的面積是的面積的倍,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】潮州統(tǒng)計局就某地居民的月收入調(diào)查了人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分

布直方圖(每個分組包括左端點(diǎn),不包括右端點(diǎn),如第一組表示收入在)。

(1)求居民月收入在的頻率;

(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);

(3)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再從這人中分層抽樣方法抽出人作進(jìn)一步分析,則月收入在的這段應(yīng)抽多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題px0∈(1,+∞),使得5+|x0|=6.qx∈(0,+∞),+81xa

(1)若a=9,判斷命題¬p,pq,(¬p)∧(¬q)的真假,并說明理由;

(2)設(shè)命題rx0R,x02+2x0+a-9≤0判斷r成立是q成立的什么條件,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是拋物線上的一點(diǎn),為拋物線的焦點(diǎn),定點(diǎn),則的外接圓的面積為_____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是中國古代的數(shù)學(xué)專著,是“算經(jīng)十書”中最重要的一種。在其第七章中有如下問題:“今有蒲生一日,長三尺,莞生一日,長一尺,蒲生日自半,莞生日自倍,問幾何日而長等?”意思是植物蒲發(fā)芽的第一天長高三尺,植物莞發(fā)芽的第一天長高一尺。蒲從第二天開始每天生長速度是前一天的一半,莞從第二天開始每天生長速度為前一天的兩倍。問這兩種植物在何時高度相同?

在此問題中,蒲和莞高度相同的時刻在( )

A. 第二天 B. 第三天 C. 第四天 D. 第五天

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a11 ,其中nN*

1設(shè),求證:數(shù)列{bn}是等差數(shù)列,并求出{an}的通項(xiàng)公式.

2設(shè),數(shù)列{cncn+2}的前n項(xiàng)和為Tn,是否存在正整數(shù)m,使得對于nN*,恒成立?若存在,求出m的最小值;若不存在,請說明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是2018年第一季度五省GDP情況圖,則下列描述中不正確的是( )

A. 與去年同期相比2018年第一季度五個省的GDP總量均實(shí)現(xiàn)了增長

B. 2018年第一季度GDP增速由高到低排位第5的是浙江省

C. 2018年第一季度GDP總量和增速由高到低排位均居同一位的省只有1

D. 去年同期河南省的GDP總量不超過4000億元

查看答案和解析>>

同步練習(xí)冊答案