將一個(gè)各個(gè)面上均涂有顏色的正方體鋸成64個(gè)同樣大小的正方體,從這些小正方體中任取一個(gè),其中恰有兩面涂色的概率為
3
8
3
8
分析:本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的事件共有64個(gè)結(jié)果,滿足條件的事件是恰有2面涂有顏色的,兩面涂有顏色的是在正方體的棱的中間上出現(xiàn),每條棱上共有2個(gè),
有12條棱,共有24個(gè),得到概率.
解答:解:由題意知本題是一個(gè)古典概型,
試驗(yàn)發(fā)生包含的事件是正方體鋸成64個(gè)同樣大小的小正方體,共有64個(gè)結(jié)果,
滿足條件的事件是恰有2面涂有顏色的,兩面涂有顏色的是在正方體的棱上出現(xiàn),
每條棱上共有2個(gè),有12條棱,共有24個(gè),
根據(jù)古典概型概率公式得到P=
24
64
=
3
8
,
故答案為
3
8
點(diǎn)評(píng):本題主要考查等可能事件的概率,古典概型,要求能夠列舉出所有事件和發(fā)生事件的個(gè)數(shù),概率問(wèn)題同其他的知識(shí)點(diǎn)結(jié)合在一起,實(shí)際上是以概率問(wèn)題為載體,還考查考查
正方體的結(jié)構(gòu)特征,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將一個(gè)各個(gè)面上均涂有顏色的正方體鋸成27個(gè)同樣大小的小正方體,從這些小正方體中任取一個(gè),其中恰有兩面涂有顏色的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將一個(gè)各個(gè)面上均涂有顏色的正方體鋸成n3(n≥3)個(gè)同樣大小的小正方體.
(1)若n=10,則從1000個(gè)小正方體中任取一個(gè),恰好兩面涂有顏色的概率為
12
125
12
125

(2)從n3個(gè)小正方體中任取一個(gè),至多有一面涂有顏色的概率為
n3-12n+16
n3
n3-12n+16
n3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•邯鄲二模)將一個(gè)各個(gè)面上均涂有顏色的正方體鋸成27個(gè)同樣大小的小正方體.
(Ⅰ)從這些小正方體中任取1個(gè),求其中至少有兩面涂有顏色的概率;
(Ⅱ)從中任取2個(gè)小正方體,記2個(gè)小正方體涂上顏色的面數(shù)之和為ξ.求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將一個(gè)各個(gè)面上均涂有顏色的正方體鋸成27個(gè)同樣大小的小正方體
(Ⅰ)從這些小正方體中任取1個(gè),求其中至少有兩面涂有顏色的概率;
(Ⅱ)從中任取2個(gè)小正方體,求2個(gè)小正方體涂上顏色的面數(shù)之和為4的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案