(本小題滿分12分)已知橢圓的對稱軸為坐標(biāo)軸,焦點(diǎn)在軸上,離心率,分別為橢圓的上頂點(diǎn)和右頂點(diǎn),且
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線與橢圓相交于兩點(diǎn),且(其中為坐標(biāo)原點(diǎn)),求的值.

(Ⅰ)(Ⅱ)

解析試題分析:(1)設(shè)橢圓的方程為),半焦距為
得,,得 …………………………2分
得,,    ……………………………………………4分
,
所以,橢圓的方程為  …………………………………………5分
(2)由,消去,并整理得:,………7分
由判別式,解得    ………………8分
設(shè),,則, ……………10分
,得     又
,故  ………………………12分
考點(diǎn):橢圓方程及直線與橢圓的位置關(guān)系
點(diǎn)評:直線與橢圓的位置關(guān)系通常聯(lián)立方程利用韋達(dá)定理求解

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分16分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分6分.
(文)已知橢圓的一個(gè)焦點(diǎn)為,點(diǎn)在橢圓上,點(diǎn)滿足(其中為坐標(biāo)原點(diǎn)), 過點(diǎn)作一斜率為的直線交橢圓于、兩點(diǎn)(其中點(diǎn)在軸上方,點(diǎn)在軸下方) .

(1)求橢圓的方程;
(2)若,求的面積;
(3)設(shè)點(diǎn)為點(diǎn)關(guān)于軸的對稱點(diǎn),判斷的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知雙曲線C與橢圓有相同的焦點(diǎn),實(shí)半軸長為.
(Ⅰ)求雙曲線的方程;
(Ⅱ)若直線與雙曲線有兩個(gè)不同的交點(diǎn),且
(其中為原點(diǎn)),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知直線經(jīng)過拋物線的焦點(diǎn),且與拋物線交于兩點(diǎn),點(diǎn)為坐標(biāo)原點(diǎn).

(Ⅰ)證明:為鈍角.
(Ⅱ)若的面積為,求直線的方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知雙曲線與橢圓有相同焦點(diǎn),且經(jīng)過點(diǎn),
求該雙曲線方程,并求出其離心率、漸近線方程,準(zhǔn)線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)已知橢圓的中心在原點(diǎn),焦點(diǎn),軸上,經(jīng)過點(diǎn),,且拋物線的焦點(diǎn)為.
(1) 求橢圓的方程;
(2) 垂直于的直線與橢圓交于,兩點(diǎn),當(dāng)以為直徑的圓軸相切時(shí),求直線的方程和圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分)
若直線過點(diǎn)(0,3)且與拋物線y2=2x只有一個(gè)公共點(diǎn),求該直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

本小題滿分10分)
求適合下列條件的拋物線的標(biāo)準(zhǔn)方程:
(1)過點(diǎn)(-3,2);
(2)焦點(diǎn)在直線x-2y-4=0上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)如圖所示,直線l與拋物線y2=x交于A(x1,y1),B(x2,y2)兩點(diǎn),與x軸交于點(diǎn)M,且y1y2=-1,

(Ⅰ)求證:點(diǎn)的坐標(biāo)為
(Ⅱ)求證:OA⊥OB;
(Ⅲ)求△AOB面積的最小值。

查看答案和解析>>

同步練習(xí)冊答案