(本小題滿分12分)
已知直線經(jīng)過拋物線的焦點(diǎn),且與拋物線交于兩點(diǎn),點(diǎn)為坐標(biāo)原點(diǎn).
(Ⅰ)證明:為鈍角.
(Ⅱ)若的面積為,求直線的方程;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線是動點(diǎn)到兩個(gè)定點(diǎn)、距離之比為的點(diǎn)的軌跡。
(1)求曲線的方程;(2)求過點(diǎn)與曲線相切的直線方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(10分)過直角坐標(biāo)平面中的拋物線,直線過焦點(diǎn)且與拋物線相交于,兩點(diǎn).
⑴當(dāng)直線的傾斜角為時(shí),用表示的長度;
⑵當(dāng)且三角形的面積為4時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線C的中心在原點(diǎn),拋物線的焦點(diǎn)是雙曲線C的一個(gè)焦點(diǎn),且雙曲線經(jīng)過點(diǎn),又知直線與雙曲線C相交于A、B兩點(diǎn).
(1)求雙曲線C的方程;
(2)若,求實(shí)數(shù)k值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分) 已知橢圓的離心率,A,B
分別為橢圓的長軸和短軸的端點(diǎn),為AB的中點(diǎn),O為坐標(biāo)原點(diǎn),且.
(1)求橢圓的方程;
(2)過(-1,0)的直線交橢圓于P,Q兩點(diǎn),求△POQ面積最大時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知橢圓的對稱軸為坐標(biāo)軸,焦點(diǎn)在軸上,離心率,分別為橢圓的上頂點(diǎn)和右頂點(diǎn),且.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線與橢圓相交于兩點(diǎn),且(其中為坐標(biāo)原點(diǎn)),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題10分)已知,動點(diǎn)滿足,設(shè)動點(diǎn)的軌跡是曲線,直線:與曲線交于兩點(diǎn).(1)求曲線的方程;
(2)若,求實(shí)數(shù)的值;
(3)過點(diǎn)作直線與垂直,且直線與曲線交于兩點(diǎn),求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知橢圓右焦點(diǎn)為,M為橢圓的上頂點(diǎn),O為坐標(biāo)原點(diǎn),且是等腰直角三角形,(1)求橢圓的方程(2)過M分別作直線MA,MB,交橢圓于A,B兩點(diǎn),設(shè)兩直線的斜率分別為,且,證明:直線AB過定點(diǎn),并求定點(diǎn)的坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為,其中左焦點(diǎn)(-2,0).
(1) 求橢圓C的方程;
(2) 若直線y=x+m與橢圓C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)M在圓x2+y2=1上,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com