【題目】如圖,在直角梯形中,,,、分別是、的中點(diǎn),將三角形沿折起,則下列說(shuō)法正確的是______________.
(1)不論折至何位置(不在平面內(nèi)),都有平面;
(2)不論折至何位置,都有;
(3)不論折至何位置(不在平面內(nèi)),都有;
(4)在折起過(guò)程中,一定存在某個(gè)位置,使.
【答案】(1)(2)(4)
【解析】
折疊后根據(jù)線(xiàn)面位置關(guān)系對(duì)每個(gè)結(jié)論給出證明.
折疊后如圖,分別取中點(diǎn),連接,易知是的交點(diǎn),因此也是中點(diǎn),而別是的中點(diǎn),
∴,,∴是平行四邊形,∴,
平面,平面,∴平面.(1)正確;
折疊過(guò)程中保持不變,又,所以平面,從而,所以,(2)正確;
若,則共面,即共面,從而直線(xiàn)共面,這樣在平面也即在平面內(nèi),矛盾,(3)錯(cuò)誤;
當(dāng)時(shí),又,而,∴平面,平面,所以.(4)正確.
故答案為:(1)(2)(4).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(2)求函數(shù)f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列判斷正確的是( )
A.“”是“”的充分不必要條件
B.函數(shù)的最小值為2
C.當(dāng)時(shí),命題“若,則”為真命題
D.命題“,”的否定是“,”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將數(shù)列的前n項(xiàng)和分成兩部分,且兩部分的項(xiàng)數(shù)分別是i,,若兩部分的和相等,則稱(chēng)數(shù)列的前n項(xiàng)和能夠進(jìn)行等和分割.
若,,試寫(xiě)出數(shù)列的前4項(xiàng)和的所有等和分割;
求證:等差數(shù)列的前項(xiàng)和能夠進(jìn)行等和分割;
若數(shù)列的通項(xiàng)公式為:,且數(shù)列的前n項(xiàng)和能進(jìn)行等和分割,求所有滿(mǎn)足條件的n.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓()的一個(gè)焦點(diǎn)與拋物線(xiàn)的焦點(diǎn)重合,截拋物線(xiàn)的準(zhǔn)線(xiàn)所得弦長(zhǎng)為1.
(1)求橢圓的方程;
(2)如圖所示,,,是橢圓的頂點(diǎn),是橢圓上除頂點(diǎn)外的任意一點(diǎn),直線(xiàn)交軸于點(diǎn),直線(xiàn)交于點(diǎn),設(shè)的斜率為,的斜率為.證明:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在點(diǎn)處的切線(xiàn)與y軸垂直.
(1)若,求的單調(diào)區(qū)間;
(2)若,成立,求a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱錐P﹣ABC中,D為AB的中點(diǎn).
(1)與BC平行的平面PDE交AC于點(diǎn)E,判斷點(diǎn)E在AC上的位置并說(shuō)明理由如下:
(2)若PA=PB,且△PCD為銳角三角形,又平面PCD⊥平面ABC,求證:AB⊥PC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已如橢圓C:的兩個(gè)焦點(diǎn)與其中一個(gè)頂點(diǎn)構(gòu)成一個(gè)斜邊長(zhǎng)為4的等腰直角三角形.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)動(dòng)直線(xiàn)l交橢圓C于P,Q兩點(diǎn),直線(xiàn)OP,OQ的斜率分別為k,k'.若,求證△OPQ的面積為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某公園有三條觀(guān)光大道、、圍成直角三角形,其中直角邊,斜邊.
(1)若甲乙都以每分鐘100的速度從點(diǎn)出發(fā),甲沿運(yùn)動(dòng),乙沿運(yùn)動(dòng),乙比甲遲2分鐘出發(fā),求乙出發(fā)后的第1分鐘末甲乙之間的距離;
(2)現(xiàn)有甲、乙、丙三位小朋友分別在點(diǎn)、、,設(shè),乙丙之間的距離是甲乙之間距離的2倍,且,請(qǐng)將甲乙之間的距離表示為的函數(shù),并求甲乙之間的最小距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com