已知函數(shù)對任意實數(shù)恒有且當x>0,

(1)判斷的奇偶性;
(2)求在區(qū)間[-3,3]上的最大值;
(3)解關于的不等式

(1) 為奇函數(shù)(2) 6 (3)見解析

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(不計入總分):已知函數(shù),設函數(shù),
(3)當a≠0時,求上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),曲線在點處的切線方程為。
(Ⅰ)求的值;
(Ⅱ)證明:當,且時,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)在(0,1)內是增函數(shù).
(1)求實數(shù)的取值范圍;
(2)若,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=x+4x+3,g(x)為一次函數(shù),若f(g(x))=x+10x+24,求g(x)
的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

.已知函數(shù)f ( x ) = 3x , f ( a + 2 ) =" 18" , g ( x ) =· 3ax – 4x的定義域為[0,1].
(Ⅰ)求a的值;
(Ⅱ)若函數(shù)g ( x )在區(qū)間[0,1]上是單調遞減函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)判斷函數(shù)y=在區(qū)間[2,6]上的單調性,并求最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
對于每個實數(shù),設三個函數(shù)中的最小值,用分段函數(shù)寫出的解析式,并求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的定義域為,且同時滿足下列條件:
(1)是奇函數(shù);
(2)在定義域上單調遞減;
(3)的取值范圍。

查看答案和解析>>

同步練習冊答案