【題目】近年來,手機已經成為人們日常生活中不可缺少的產品,手機的功能也日趨完善,已延伸到了各個領域,如拍照,聊天,閱讀,繳費,購物,理財,娛樂,辦公等等,手機的價格差距也很大,為分析人們購買手機的消費情況,現對某小區(qū)隨機抽取了200人進行手機價格的調查,統(tǒng)計如下:
年齡 價格 | 5000元及以上 | 3000元﹣4999元 | 1000元﹣2999元 | 1000元以下 |
45歲及以下 | 12 | 28 | 66 | 4 |
45歲以上 | 3 | 17 | 46 | 24 |
(Ⅰ)完成關于人們使用手機的價格和年齡的2×2列聯表,再判斷能否在犯錯誤的概率不超過0.025的前提下,認為人們使用手機的價格和年齡有關?
(Ⅱ)從樣本中手機價格在5000元及以上的人群中選擇3人調查其收入狀況,設3人中年齡在45歲及以下的人數為隨機變量X,求隨機變量X的分布列及數學期望.
附K2=
P(K2≥k) | 0.05 | 0.025 | 0.010 | 0.001 |
k | 3.841 | 5.024 | 6.635 | 10.828 |
【答案】解:(Ⅰ)關于人們使用手機的價格和年齡的2×2列聯表如下:
3000元及以上 | 3000元以下 | 總計 | |
45歲及以下 | 40 | 70 | 110 |
45歲以上 | 20 | 70 | 90 |
總計 | 60 | 140 | 200 |
根據2×2列聯中的數據可得K2= ≈4.714<5.024,
∴在犯錯概率不超過0.025的前提下,不能認為“人們使用手機的價格和年齡有關”;
(Ⅱ)由表可知手機價格在5000元及其以上的人數為15,
從中選擇3人,年齡在45歲及以下的人數X的可能取值為:0,1,2,3,
P(X=0)= = ,
P(X=1)= = ,
P(X=2)= = ,
P(X=3)= = ,
∴X的分布列為:
X | 0 | 1 | 2 | 3 |
P |
∴E(X)=0× +1× +2× +3× =
【解析】(1)分別計算出年齡在45歲上下的人數,求出K2的值,判斷在犯錯概率不超過0.025的前提下認為“人們使用手機的價格和年齡有關”;(2)先確定X的取值,分別求其概率,求出分布列和數學期望.
【考點精析】解答此題的關鍵在于理解離散型隨機變量及其分布列的相關知識,掌握在射擊、產品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=xex﹣1﹣a(x+lnx),a∈R.
(1)若曲線y=f(x)在點(1,f(1))處的切線為x軸,求a的值:
(2)在(1)的條件下,求f(x)的單調區(qū)間;
(3)若x>0,f(x)≥f(m)恒成立,且f(m)≥0,求證:f(m)≥2(m2﹣m3).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= ax2+lnx,a∈R. (Ⅰ)若曲線y=f(x)與直線y=3x+b在x=1處相切,求實數a,b的值;
(Ⅱ)求函數y=f(x)的單調區(qū)間;
(Ⅲ)若a=0時,函數h(x)=f(x)+bx有兩個不同的零點,求實數b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C的極坐標方程ρ=2cosθ,直線l的參數方程是 (t為參數). (Ⅰ)將曲線C的極坐標方程化為直角坐標方程;
(Ⅱ)設直線l與y軸的交點是M,N是曲線C上一動點,求|MN|的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,雙曲線的中心在坐標原點O,M、N分別為雙曲線虛軸的上、下端點,A是雙曲線的右頂點,F是雙曲線的右焦點,直線AM與FN相交于點P,若∠APF是銳角,則此雙曲線的離心率的取值范圍是( )
A.( ,+∞)
B.(1+ ,+∞)
C.(0, )
D.( ,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x﹣ |﹣|2x+1|. (Ⅰ)求f(x)的值域;
(Ⅱ)若f(x)的最大值時a,已知x,y,z均為正實數,且x+y+z=a,求證: + + ≥1.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖:四棱錐P﹣ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD= ,點F是PB的中點,點E在邊BC上移動.
(1)證明:無論點E在BC邊的何處,都有PE⊥AF;
(2)當BE等于何值時,PA與平面PDE所成角的大小為45°.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列函數中,與函數y=﹣e|x|的奇偶性相同,且在(﹣∞,0)上單調性也相同的是( )
A.
B.y=ln|x|
C.y=x3﹣3
D.y=﹣x2+2
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com