【題目】如圖,雙曲線的中心在坐標原點O,M、N分別為雙曲線虛軸的上、下端點,A是雙曲線的右頂點,F(xiàn)是雙曲線的右焦點,直線AM與FN相交于點P,若∠APF是銳角,則此雙曲線的離心率的取值范圍是(
A.( ,+∞)
B.(1+ ,+∞)
C.(0,
D.( ,+∞)

【答案】A
【解析】解:設雙曲線的方程為 =1, 由題意可得A(a,0),F(xiàn)(c,0),M(0,b),N(0,﹣b),
故直線AF的方程為y+b= x,直線NF的方程為y﹣b=﹣ x,
聯(lián)立方程組,解得x= ,y=
即P( , ),
=( , ), =( , ),
∵∠APF是銳角,
= + <0,
∴b2<ac,
∴c2﹣a2<ac
∴e﹣ <1,
即e2﹣e﹣1<0,
解得e> ,e< (舍去),
故選:A

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|xex|,g(x)=f2(x)+λf(x),若方程g(x)=﹣1有且僅有4個不同的實數(shù)解,則實數(shù)λ的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)= ,F(xiàn)(x)=2f(x)﹣x有2個零點,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三棱柱ABC﹣A1B1C1中,△ABC為等邊三角形,AA1⊥平面ABC,AA1=AB,M,N分別是A1B1 , A1C1的中點,則BM與AN所成角的余弦值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知M是直線l:x=﹣1上的動點,點F的坐標是(1,0),過M的直線l′與l垂直,并且l′與線段MF的垂直平分線相交于點N (Ⅰ)求點N的軌跡C的方程
(Ⅱ)設曲線C上的動點A關于x軸的對稱點為A′,點P的坐標為(2,0),直線AP與曲線C的另一個交點為B(B與A′不重合),直線P′H⊥A′B,垂足為H,是否存在一個定點Q,使得|QH|為定值?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來,手機已經(jīng)成為人們日常生活中不可缺少的產(chǎn)品,手機的功能也日趨完善,已延伸到了各個領域,如拍照,聊天,閱讀,繳費,購物,理財,娛樂,辦公等等,手機的價格差距也很大,為分析人們購買手機的消費情況,現(xiàn)對某小區(qū)隨機抽取了200人進行手機價格的調查,統(tǒng)計如下:

年齡 價格

5000元及以上

3000元﹣4999元

1000元﹣2999元

1000元以下

45歲及以下

12

28

66

4

45歲以上

3

17

46

24

(Ⅰ)完成關于人們使用手機的價格和年齡的2×2列聯(lián)表,再判斷能否在犯錯誤的概率不超過0.025的前提下,認為人們使用手機的價格和年齡有關?
(Ⅱ)從樣本中手機價格在5000元及以上的人群中選擇3人調查其收入狀況,設3人中年齡在45歲及以下的人數(shù)為隨機變量X,求隨機變量X的分布列及數(shù)學期望.
附K2=

P(K2≥k)

0.05

0.025

0.010

0.001

k

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2016年微信用戶數(shù)量統(tǒng)計顯示,微信注冊用戶數(shù)量已經(jīng)突破9.27億.微信用戶平均年齡只有26歲,97.7%的用戶在50歲以下,86.2%的用戶在18﹣36歲之間.為調查大學生這個微信用戶群體中每人擁有微信群的數(shù)量,現(xiàn)從北京市大學生中隨機抽取100位同學進行了抽樣調查,結果如下:

微信群數(shù)量

頻數(shù)

頻率

0至5個

0

0

6至10個

30

0.3

11至15個

30

0.3

16至20個

a

c

20個以上

5

b

合計

100

1

(Ⅰ)求a,b,c的值;
(Ⅱ)若從這100位同學中隨機抽取2人,求這2人中恰有1人微信群個數(shù)超過15個的概率;
(Ⅲ)以這100個人的樣本數(shù)據(jù)估計北京市的總體數(shù)據(jù)且以頻率估計概率,若從全市大學生中隨機抽取3人,記X表示抽到的是微信群個數(shù)超過15個的人數(shù),求X的分布列和數(shù)學期望EX.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)滿足f(x)=f( )且當x∈[ ,1]時,f(x)=lnx,若當x∈[ ]時,函數(shù)g(x)=f(x)﹣ax與x軸有交點,則實數(shù)a的取值范圍是(
A.[﹣ ,0]
B.[﹣πl(wèi)nπ,0]
C.[﹣ , ]
D.[﹣ ,﹣ ]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=cos(x+ )+sinx.
(I)利用“五點法”,列表并畫出f(x)在[﹣ , ]上的圖象;
(II)a,b,c分別是△ABC中角A,B,C的對邊.若a= ,f(A)= ,b=1,求△ABC的面積.

x

f(x)

查看答案和解析>>

同步練習冊答案