已知數(shù)列滿(mǎn)足,其中N*.
(Ⅰ)設(shè),求證:數(shù)列是等差數(shù)列,并求出的通項(xiàng)公式
(Ⅱ)設(shè),數(shù)列的前項(xiàng)和為,是否存在正整數(shù),使得對(duì)于N*恒成立,若存在,求出的最小值,若不存在,請(qǐng)說(shuō)明理由.

(I).
(II) 的最小值為.

解析試題分析:(I)證明
,
所以數(shù)列是等差數(shù)列,,因此,由.
(II),,所以,
依題意要使對(duì)于恒成立,只需
解得,所以的最小值為.
考點(diǎn):本題主要考查等差數(shù)列的通項(xiàng)公式,“裂項(xiàng)相消法”。
點(diǎn)評(píng):中檔題,利用數(shù)列的遞推公式,進(jìn)一步確定數(shù)列的特征,從而得到等差數(shù)列通項(xiàng)公式,數(shù)列求和問(wèn)題中, “錯(cuò)位相減法”、“裂項(xiàng)相消法”、“分組求和法”是高考常?疾榈綌(shù)列求和方法。本題為證明不等式,先求和、再放縮、做結(jié)論。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列中,,且當(dāng)時(shí),,.記的階乘.
(1)求數(shù)列的通項(xiàng)公式;
(2)求證:數(shù)列為等差數(shù)列;
(3)若,求的前 項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前n項(xiàng)和為,且=-n+20n,n∈N
(Ⅰ)求通項(xiàng)
(Ⅱ)設(shè)是首項(xiàng)為1,公比為3的等比數(shù)列,求數(shù)列的通項(xiàng)公式及其前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列滿(mǎn)足:,,的前n項(xiàng)和為
(1)求;
(2)令=(),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列滿(mǎn)足,;
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和,并求當(dāng)最大時(shí)序號(hào)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列滿(mǎn)足:,  ,,前項(xiàng)和為的數(shù)列滿(mǎn)足:,又。
(1)求數(shù)列的通項(xiàng)公式;
(2)證明:;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列對(duì)任意,滿(mǎn)足.
(1)求數(shù)列通項(xiàng)公式;
(2)若,求的通項(xiàng)公式及前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)和為,若對(duì)任意,都有.
⑴求數(shù)列的首項(xiàng);
⑵求證:數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
⑶數(shù)列滿(mǎn)足,問(wèn)是否存在,使得恒成立?如果存在,求出 的值,如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分15分)
數(shù)列是首項(xiàng)為23,公差為整數(shù)的等差數(shù)列,且,
求:(1)數(shù)列的公差;
(2)前項(xiàng)和的最大值;
(3)當(dāng)時(shí),求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案