設(shè)數(shù)列的前項(xiàng)和為,若對(duì)任意,都有.
⑴求數(shù)列的首項(xiàng);
⑵求證:數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
⑶數(shù)列滿足,問(wèn)是否存在,使得恒成立?如果存在,求出 的值,如果不存在,說(shuō)明理由.

;⑵ ;⑶

解析試題分析:⑴∵ ∴             3分
⑵∵   ∴    (≥2)
                          5分

(為常數(shù)) (≥2)
∴數(shù)列是以為公比的等比數(shù)列                      7分
                                     10分
⑶∵      ∴
                  12分
                 14分
∴當(dāng)≥3時(shí),<1; 當(dāng)=2時(shí),>1
∴當(dāng)2時(shí),有最大值 
                                      15分
                                          16分
考點(diǎn):本題主要考查等差數(shù)列、等比數(shù)列的的基礎(chǔ)知識(shí),函數(shù)的單調(diào)性。
點(diǎn)評(píng):中檔題,本題具有較強(qiáng)的綜合性,本解答根據(jù)的關(guān)系確定通項(xiàng)公式,認(rèn)識(shí)到數(shù)列的特征。對(duì)于存在性問(wèn)題,往往先假設(shè)存在,本題通過(guò)考察 的單調(diào)性,利用“放縮法”,證明假設(shè)的合理性。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列滿足,.
(1)求數(shù)列的通項(xiàng)公式;
(2)令,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,試比較Tn的大小,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列滿足,其中N*.
(Ⅰ)設(shè),求證:數(shù)列是等差數(shù)列,并求出的通項(xiàng)公式
(Ⅱ)設(shè),數(shù)列的前項(xiàng)和為,是否存在正整數(shù),使得對(duì)于N*恒成立,若存在,求出的最小值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列,首項(xiàng)a 1 =3且2a n+1="S"  n?S n-1 (n≥2).
(1)求證:{}是等差數(shù)列,并求公差;
(2)求{a n }的通項(xiàng)公式;
(3)數(shù)列{an }中是否存在自然數(shù)k0,使得當(dāng)自然數(shù)k≥k 0時(shí)使不等式a k>a k+1對(duì)任意大于等于k的自然數(shù)都成立,若存在求出最小的k值,否則請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

觀察數(shù)表
1
2   3   4
3   4   5   6   7
4   5   6   7   8   9   10
            
求:(1)這個(gè)表的第行里的最后一個(gè)數(shù)字是多少?
(2)第行各數(shù)字之和是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列{an},Sn為它的前n項(xiàng)的和,已知a1=-2,an+1=Sn,當(dāng)n≥2時(shí),求:an和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列滿足:,,(其中為非零常數(shù),).
(1)判斷數(shù)列是不是等比數(shù)列?
(2)求;
(3)當(dāng)時(shí),令,為數(shù)列的前項(xiàng)和,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
已知數(shù)列中的各項(xiàng)均為正數(shù),且滿足.記,數(shù)列的前項(xiàng)和為,且
(1)證明是等比數(shù)列;
(2)求數(shù)列的通項(xiàng)公式;
(3)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知數(shù)列中的,且),則數(shù)列中的(   )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案