【題目】如圖,矩形,下列結論中不正確的是( )
A. B. C. D.
【答案】A
【解析】分析:由PA⊥矩形ABCD,得PA⊥BD,若PD⊥BD,則BD⊥平面PAD,又BA⊥平面PAD,則過平面外一面有兩條直線與平面垂直,不成立,故PD⊥BD不正確.
詳解:∵PA⊥矩形ABCD,
∴PA⊥BD,若PD⊥BD,則BD⊥平面PAD,
又BA⊥平面PAD,則過平面外一面有兩條直線與平面垂直,不成立,
故PD⊥BD不正確,故A不正確;
∵PA⊥矩形ABCD,
∴PA⊥CD,AD⊥CD,
∴CD⊥平面PAD,∴PD⊥CD,故B正確;
∵PA⊥矩形ABCD,
∴由三垂線定理得PB⊥BC,故C正確;
∵PA⊥矩形ABCD,
∴由直線與平面垂直的性質得PA⊥BD,故D正確.
故選:A.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 經(jīng)過點 ,離心率為 ,左、右焦點分別為 .
(1)求橢圓的方程;
(2)若直線 與橢圓交于A,B兩點,與以 為直徑的圓交于C,D兩點,求 的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正項數(shù)列的前n項和為,且滿足,數(shù)列滿足,,且..
(1)求數(shù)列與的通項公式;
(2)求數(shù)列的前項的;
(3)將數(shù)列與的項相間排列構成新數(shù)列,設新數(shù)列的前項和為,若對任意正整數(shù)n都有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓 ,圓心為 ,定點 , 為圓 上一點,線段 上一點 滿足 ,直線 上一點 ,滿足 .
(Ⅰ)求點 的軌跡 的方程;
(Ⅱ) 為坐標原點, 是以 為直徑的圓,直線 與 相切,并與軌跡 交于不同的兩點 .當 且滿足 時,求 面積 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠生產(chǎn)和兩種產(chǎn)品,按計劃每天生產(chǎn)各不得少于10噸,已知生產(chǎn)產(chǎn)品噸需要用煤9噸,電4度,勞動力3個(按工作日計算).生產(chǎn)產(chǎn)品1噸需要用煤4噸,電5度,勞動力10個,如果產(chǎn)品每噸價值7萬元, 產(chǎn)品每噸價值12萬元,而且每天用煤不超過300噸,用電不超過200度,勞動力最多只有300個,每天應安排生產(chǎn)兩種產(chǎn)品各多少才是合理的?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓: ,直線過定點.
(Ⅰ)若與圓相切,求的方程;
(Ⅱ)若與圓相交于、兩點,求的面積的最大值,并求此時直線的方程.(其中點是圓的圓心)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com