【題目】在平面直角坐標(biāo)系中,函數(shù)在第一象限內(nèi)的圖像如圖所示,試做如下操作:把x軸上的區(qū)間等分成n個小區(qū)間,在每一個小區(qū)間上作一個小矩形,使矩形的右端點落在函數(shù)的圖像上.若用表示第k個矩形的面積,表示這n個叫矩形的面積總和.

1)求的表達式;

2)利用數(shù)學(xué)歸納法證明,并求出的表達式

3)求的值,并說明的幾何意義.

【答案】1;(2)證明見解析,;(3的幾何意義表示函數(shù)的圖象與軸,及直線所圍曲線梯形的面積.

【解析】

1)第個矩形的高為,面積易得;

2)用數(shù)學(xué)歸納法證明;由此等式可求得

3)根據(jù)極限的性質(zhì)求極限.

1)由題意第個矩形的高是,∴

2(i)時,,命題成立,

(ii)設(shè)時命題成立,即

時,

,

時命題成立,

綜上,時,命題為真,即,

3

的幾何意義表示函數(shù)的圖象與軸,及直線所圍曲線梯形的面積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在信息時代的今天,隨著手機的發(fā)展,“微信”越來越成為人們交流的一種方法,某機構(gòu)對“使用微信交流”的態(tài)度進行調(diào)查,隨機抽取了100人,他們年齡的頻數(shù)分布及對“使用微信交流”贊成的人數(shù)如下表:(注:年齡單位:歲)

年齡

頻數(shù)

10

30

30

20

5

5

贊成人數(shù)

9

25

24

9

2

1

(1)若以“年齡45歲為分界點”,由以上統(tǒng)計數(shù)據(jù)完成下面的列聯(lián)表,并通過計算判斷是否在犯錯誤的概率不超過0.001的前提下認(rèn)為“使用微信交流的態(tài)度與人的年齡有關(guān)”?

年齡不低于45歲的人數(shù)

年齡低于45歲的人數(shù)

合計

贊成

不贊成

合計

(2)若從年齡在,調(diào)查的人中各隨機選取1人進行追蹤調(diào)查,求選中的2人中贊成“使用微信交流”的人數(shù)恰好為1人的概率.

0.025

0.010

0.005

0.001

3.841

6.635

7.879

10.828

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若函數(shù)時取得極值,求實數(shù)的值;

(Ⅱ)當(dāng)時,求零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,設(shè)函數(shù).

(1)討論單調(diào)性;

(2)若當(dāng)時,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的“8”字形曲線是由兩個關(guān)于軸對稱的半圓和一個雙曲線的一部分組成的圖形,其中上半個圓所在圓方程是,雙曲線的左、右頂點是該圓與軸的交點,雙曲線與半圓相交于與軸平行的直徑的兩端點.

1)試求雙曲線的標(biāo)準(zhǔn)方程;

2)記雙曲線的左、右焦點為、,試在“8”字形曲線上求點,使得是直角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某超市從2014年甲、乙兩種酸奶的日銷售量(單位:箱)的數(shù)據(jù)中分別隨機抽取100個,并按[ 0,10],(10,20],(2030],(30,40],(4050]分組,得到頻率分布直方圖如下:

假設(shè)甲、乙兩種酸奶獨立銷售且日銷售量相互獨立.

1)寫出頻率分布直方圖(甲)中的的值;記甲種酸奶與乙種酸奶日銷售量(單位:箱)的方差分別為,,試比較的大小;(只需寫出結(jié)論)

2)估計在未來的某一天里,甲、乙兩種酸奶的銷售量恰有一個高于20箱且另一個不高于20箱的概率;

3)設(shè)表示在未來3天內(nèi)甲種酸奶的日銷售量不高于20箱的天數(shù),以日銷售量落入各組的頻率作為概率,求的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,五邊形中,四邊形為長方形,為邊長為的正三角形,將沿折起,使得點在平面上的射影恰好在上.

(Ⅰ)當(dāng)時,證明:平面平面;

(Ⅱ)若,求平面與平面所成二面角的余弦值的絕對值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,把長為6,寬為3的矩形折成正三棱柱,三棱柱的高度為3,矩形的對角線和三棱柱的側(cè)棱、的交點記為.

1)在三棱柱中,若過三點做一平面,求截得的幾何體的表面積;

2)求三棱柱中異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是等差數(shù)列,,且,,成等比數(shù)列.

1)求的通項公式;

2)求的前項和的最小值;

3)若是等差數(shù)列,的公差不相等,且,問:中除第5項外,還有序號相同且數(shù)值相等的項嗎?(直接寫出結(jié)論即可)

查看答案和解析>>

同步練習(xí)冊答案