【題目】如圖,五邊形中,四邊形為長(zhǎng)方形,為邊長(zhǎng)為的正三角形,將沿折起,使得點(diǎn)在平面上的射影恰好在上.
(Ⅰ)當(dāng)時(shí),證明:平面平面;
(Ⅱ)若,求平面與平面所成二面角的余弦值的絕對(duì)值.
【答案】(Ⅰ)證明見(jiàn)解析;(Ⅱ).
【解析】
試題
(Ⅰ)作,垂足為,依題意得平面,則,平面,,結(jié)合勾股定理可得,則平面,平面平面.
(Ⅱ)由幾何關(guān)系,以為軸建立空間直角坐標(biāo)系,由題意可得平面的法向量,平面的法向量.計(jì)算可得平面與平面所成二面角的余弦值的絕對(duì)值為.
試題解析:
(Ⅰ)作,垂足為,依題意得平面,,
又,平面,
利用勾股定理得,同理可得.
在中,
平面,又平面,
所以平面平面
(Ⅱ)連結(jié),,,
,又四邊形為長(zhǎng)方形,.
取中點(diǎn)為,得∥,連結(jié),
其中,,
由以上證明可知互相垂直,不妨以為軸建立空間直角坐標(biāo)系.,
,
設(shè)是平面的法向量,
則有即,
令得
設(shè)是平面的法向量,
則有即
令得.
則
所以平面與平面所成二面角的余弦值的絕對(duì)值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知空間幾何體中,與均為邊長(zhǎng)為的等邊三角形,為腰長(zhǎng)為的等腰三角形,平面平面,平面平面.
(1)試在平面內(nèi)作一條直線(xiàn),使直線(xiàn)上任意一點(diǎn)與的連線(xiàn)均與平面平行,并給出詳細(xì)證明;
(2)求直線(xiàn)與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)若函數(shù)在時(shí)取得極值,求實(shí)數(shù)的值;
(Ⅱ)當(dāng)時(shí),求零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,函數(shù)在第一象限內(nèi)的圖像如圖所示,試做如下操作:把x軸上的區(qū)間等分成n個(gè)小區(qū)間,在每一個(gè)小區(qū)間上作一個(gè)小矩形,使矩形的右端點(diǎn)落在函數(shù)的圖像上.若用表示第k個(gè)矩形的面積,表示這n個(gè)叫矩形的面積總和.
(1)求的表達(dá)式;
(2)利用數(shù)學(xué)歸納法證明,并求出的表達(dá)式
(3)求的值,并說(shuō)明的幾何意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)的焦點(diǎn)為,為軸上的點(diǎn).
(1)過(guò)點(diǎn)作直線(xiàn)與相切,求切線(xiàn)的方程;
(2)如果存在過(guò)點(diǎn)的直線(xiàn)與拋物線(xiàn)交于,兩點(diǎn),且直線(xiàn)與的傾斜角互補(bǔ),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:,其中,點(diǎn)是橢圓的右頂點(diǎn),射線(xiàn):與橢圓的交點(diǎn)為.
(1)求點(diǎn)的坐標(biāo);
(2)設(shè)橢圓的長(zhǎng)半軸、短半軸的長(zhǎng)分別為、,當(dāng)的值在區(qū)間中變化時(shí),求的取值范圍;
(3)在(2)的條件下,以為焦點(diǎn),為頂點(diǎn)且開(kāi)口方向向左的拋物線(xiàn)過(guò)點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,底面是邊長(zhǎng)為2的正方形,底面,四棱錐的體積,M是的中點(diǎn).
(1)求異面直線(xiàn)與所成角的余弦值;
(2)求點(diǎn)B到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)定義在上的函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若存在,使得成立,求實(shí)數(shù)的取值范圍;
(3)定義:如果實(shí)數(shù)滿(mǎn)足, 那么稱(chēng)比更接近.對(duì)于(2)中的及,問(wèn):和哪個(gè)更接近?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知方程的曲線(xiàn)是圓C,
(1)若直線(xiàn)l:與圓C相交于M、N兩點(diǎn),且(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)m的值;
(2)當(dāng)時(shí),設(shè)T為直線(xiàn)n:上的動(dòng)點(diǎn),過(guò)T作圓C的兩條切線(xiàn)TG、TH,切點(diǎn)分別為G、H,求四邊形TGCH而積的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com