【題目】已知橢圓的焦距為8,其短軸的兩個端點與長軸的一個端點構(gòu)成正三角形。

(1)求的方程;

(2)設(shè)的左焦點,為直線上任意一點,過點的垂線交于兩點,.

(i)證明:平分線段(其中為坐標(biāo)原點);

(ii)當(dāng)取最小值時,求點的坐標(biāo)。

【答案】(1);(2)見解析

【解析】

(1)由已知,根據(jù)橢圓的焦距為8,其短軸的兩個端點與長軸的個端點構(gòu)成正三角形,求得的值,即可求得橢圓的方程;

(2)(ⅰ)設(shè)點的坐標(biāo)為,驗證當(dāng)時,平分顯然成立;當(dāng)由直線的方程和橢圓的方程聯(lián)立方程組,求解中點的坐標(biāo),即可得到結(jié)論;

(ⅱ)由(。┛芍,求得,得到,利用基本不等式,即可求解.

1)由已知,得. 因為,易解得.

所以,所求橢圓的標(biāo)準(zhǔn)方程為

(2)設(shè)點的坐標(biāo)為

當(dāng)時,軸垂直的中點平分顯然成立

當(dāng)由已知可得:

則直線的方程為:

設(shè)

消去得:

,

中點的坐標(biāo)為

在直線.

綜上平分線段

當(dāng)時,

當(dāng)時,由可知

/span>

(當(dāng)且僅當(dāng),即時等號成立),

∴點的坐標(biāo)為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)滿足:對于其定義域內(nèi)的任何一個自變量,都有函數(shù)值,則稱函數(shù)上封閉.

1)若下列函數(shù):,的定義域為,試判斷其中哪些在上封閉,并說明理由.

2)若函數(shù)的定義域為,是否存在實數(shù),使得在其定義域上封閉?若存在,求出所有的值,并給出證明;若不存在,請說明理由.

3)已知函數(shù)在其定義域上封閉,且單調(diào)遞增,若,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù)

)當(dāng)時,求曲線在點處的切線方程.

)求在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,橢圓C1(a>b>0)的離心率為,橢圓上動點P到一個焦點的距離的最小值為3(1)

(1) 求橢圓C的標(biāo)準(zhǔn)方程;

(2) 已知過點M(0,-1)的動直線l與橢圓C交于A,B兩點,試判斷以線段AB為直徑的圓是否恒過定點,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某次活動中,有5名幸運之星.5名幸運之星可獲得、兩種獎品中的一種,并規(guī)定每個人通過拋擲一枚質(zhì)地均為的骰子決定自己最終獲得哪一種獎品(骰子的六個面上的點數(shù)分別為1點、2點、3點、4點、5點、6點),拋擲點數(shù)小于3的獲得獎品,拋擲點數(shù)不小于3的獲得獎品.

(1)求這5名幸運之星中獲得獎品的人數(shù)大于獲得獎品的人數(shù)的概率

(2)設(shè)、分別為獲得、兩種獎品的人數(shù),并記,求隨機變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知多面體的底面是邊長為的菱形, 底面 ,且

1證明:平面平面

2若直線與平面所成的角為,求二面角

的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點,直線,設(shè)圓的半徑為1, 圓心在.

1)若圓心也在直線上,過點作圓的切線,求切線方程;

2)若圓上存在點,使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】漁民出海打魚,為了保證獲得的魚新鮮,魚被打上岸后,要在最短的時間內(nèi)將其分揀、冷藏,若不及時處理,打上來的魚很快地失去新鮮度(以魚肉內(nèi)的三甲胺量的多少來確定魚的新鮮度.三甲胺是一種揮發(fā)性堿性氨,是氨的衍生物,它是由細(xì)菌分解產(chǎn)生的.三甲胺量積聚就表明魚的新鮮度下降,魚體開始變質(zhì)進(jìn)而腐敗).已知某種魚失去的新鮮度與其出海后時間(分)滿足的函數(shù)關(guān)系式為.若出海后10分鐘,這種魚失去的新鮮度為10%,出海后20分鐘,這種魚失去的新鮮度為20%,那么若不及時處理,打上來的這種魚在多長時間后開始失去全部新鮮度(已知,結(jié)果取整數(shù))(

A.33分鐘B.40分鐘C.43分鐘D.50分鐘

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個焦點與上、下頂點構(gòu)成直角三角形,以橢圓的長軸長為直徑的圓與直線相切.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)過橢圓右焦點且不平行于軸的動直線與橢圓相交于兩點,探究在軸上是否存在定點,使得為定值?若存在,試求出定值和點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案