【題目】如圖,在平面直角坐標系中,點,直線,設圓的半徑為1, 圓心在.

1)若圓心也在直線上,過點作圓的切線,求切線方程;

2)若圓上存在點,使,求圓心的橫坐標的取值范圍.

【答案】12

【解析】

試題分析:(1)兩直線方程聯(lián)立可解得圓心坐標,又知圓的半徑為,可得圓的方程,根據(jù)點到直線距離公式,列方程可求得直線斜率,進而得切線方程;(2)根據(jù)圓的圓心在直線上可設圓的方程為,由可得的軌跡方程為,若圓上存在點,使,只需兩圓有公共點即可.

試題解析:(1)由得圓心,

的半徑為1

的方程為:,

顯然切線的斜率一定存在,設所求圓的切線方程為,即

,

所求圓的切線方程為

2的圓心在直線上,所以,設圓心,

則圓的方程為

,

,則,整理得,設為圓

所以點應該既在圓上又在圓上,即圓和圓有交點,

,

,得,

,得

綜上所述,的取值范圍為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}和等比數(shù)列{bn}滿足a1=b1=1,a2+a4=10,b2b4=a5
(Ⅰ)求{an}的通項公式;
(Ⅱ)求和:b1+b3+b5+…+b2n1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體ABCD中,下面結論錯誤的是( )

A. BD∥平面C B. AC1⊥BD

C. AC1⊥平面C D. 向量的夾角為60°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直棱柱ABC-A1B1C1的底面ABC中,CA=CB=1,ACB=90°,棱AA1=2,如圖,以C為原點,分別以CA,CB,CC1x,y,z軸建立空間直角坐標系.

(1)求平面A1B1C的法向量;

(2)求直線AC與平面A1B1C夾角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列關于概率和統(tǒng)計的幾種說法:

10名工人某天生產同一種零件,生產的件數(shù)分別是15,17,14,10,15,17,17,16,14,12,設其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則a,b,c的大小關系為cab

②樣本4,2,1,0,-2的標準差是2;

③在面積為S的△ABC內任選一點P,則隨機事件“△PBC的面積小于”的概率為;

④從寫有0,1,2,,9的十張卡片中,有放回地每次抽一張,連抽兩次,則兩張卡片上的數(shù)字各不相同的概率是.

其中正確說法的序號有________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在底面為平行四邊形的四棱錐O-ABCD,BC⊥平面OAB,EOB中點,OA=AD=2AB=2,OB=.

(1)求證:平面OAD⊥平面ABCD;

(2)求二面角B-AC-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a,b為異面直線,且所成的角為70°,過空間一點作直線l,直線l與a,b均異面,且所成的角均為50°,則滿足條件的直線共有( ) 條

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=(1﹣x2)ex
(Ⅰ)討論f(x)的單調性;
(Ⅱ)當x≥0時,f(x)≤ax+1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC的內角A,B,C的對邊分別為a,b,c,已知△ABC的面積為 .(12分)
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周長.

查看答案和解析>>

同步練習冊答案