【題目】設(shè)函數(shù).
(1)當時,證明:在區(qū)間上是增函數(shù);
(2)當,函數(shù)的零點個數(shù),并說明理由;
(3)求函數(shù)的對稱中心,并說明理由.
【答案】(1)證明見解析;(2),理由見解析;(3).
【解析】
(1)化簡函數(shù)的解析式,根據(jù)單調(diào)性的定義可證明出函數(shù)在區(qū)間上是增函數(shù);
(2)判斷函數(shù)在各區(qū)間的單調(diào)性,從而得出結(jié)論;
(3)將函數(shù)進行平移變換構(gòu)造一個奇函數(shù)即可得出對稱中心.
(1)當時,,
任取、且,即,
,
,,,,,.
,,則,即,
因此,函數(shù)在區(qū)間上為增函數(shù);
(2)當時,,
顯然當時,函數(shù)為增函數(shù),其中、、、、,
當時,,當時,,
所以,函數(shù)在區(qū)間上有且只有一個零點;
又當時,,
當時,,
所以,函數(shù)在和上沒有零點,
因此,函數(shù)共有個零點;
(3),
構(gòu)造函數(shù),
可知,函數(shù)的定義域為,關(guān)于原點對稱,
,
所以,函數(shù)為奇函數(shù),其對稱中心為坐標原點,
且有,
為了得到函數(shù)的圖象,可將函數(shù)的圖象向上平移個單位長度,向左平移個單位長度即可.
因此,函數(shù)圖象的對稱中心坐標為.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)a∈R,函數(shù)f(x)=x|x-a|-a.
(1) 若f(x)為奇函數(shù),求a的值;
(2) 若對任意的x∈[2,3],f(x)≥0恒成立,求a的取值范圍;
(3) 當a>4時,求函數(shù)y=f(f(x)+a)零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一種作圖工具如圖1所示.是滑槽的中點,短桿可繞轉(zhuǎn)動,長桿通過處鉸鏈與連接,上的栓子可沿滑槽AB滑動,且,.當栓子在滑槽AB內(nèi)作往復(fù)運動時,帶動繞轉(zhuǎn)動一周(不動時,也不動),處的筆尖畫出的曲線記為.以為原點,所在的直線為軸建立如圖2所示的平面直角坐標系.
(Ⅰ)求曲線C的方程;
(Ⅱ)設(shè)動直線與兩定直線和分別交于兩點.若直線總與曲線有且只有一個公共點,試探究:的面積是否存在最小值?若存在,求出該最小值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年1月1日新修訂的個稅法正式實施,規(guī)定:公民全月工資、薪金所得不超過5000元的部分不必納稅,超過5000元的部分為全月應(yīng)納稅所得額.此項稅款按下表分段累計計算(預(yù)扣):
全月應(yīng)繳納所得額 | 稅率 |
不超過3000元的部分 | |
超過3000元至12000元的部分 | |
超過12000元至25000元的部分 |
國家在實施新個稅時,考慮到納稅人的實際情況,實施了《個人所得稅稅前專項附加扣稅暫行辦法》,具體如下表:
項目 | 每月稅前抵扣金額(元) | 說明 |
子女教育 | 1000 | 一年按12月計算,可扣12000元 |
繼續(xù)教育 | 400 | 一年可扣除4800元,若是進行技能職業(yè)教育或者專業(yè)技術(shù)職業(yè)資格教育一年可扣除3600元 |
大病醫(yī)療 | 5000 | 一年最高抵扣金額為60000元 |
住房貸款利息 | 1000 | 一年可扣除12000元,若夫妻雙方在同一城市工作,可以選擇一方來扣除 |
住房租金 | 1500/1000/800 | 扣除金額需要根據(jù)城市而定 |
贍養(yǎng)老人 | 2000 | 一年可扣除24000元,若不是獨生子女,子女平均扣除.贍養(yǎng)老人年齡需要在60周歲及以上 |
老李本人為獨生子女,家里有70歲的老人需要贍養(yǎng),有一個女兒正讀高三,他每月還需繳納住房貸款2734元.若2019年11月老李工資,薪金所得為20000元,按照《個人所得稅稅前專項附加扣稅暫行辦法》,則老李應(yīng)繳納稅款(預(yù)扣)為______元.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,定義為兩點、的“切比雪夫距離”,又設(shè)點及上任意一點,稱的最小值為點到直線的“切比雪夫距離”,記作,給出四個命題,正確的是________.
①對任意三點、、,都有;
② 到原點的“切比雪夫距離”等于的點的軌跡是正方形;
③ 已知點和直線,則;
④ 定點、,動點滿足,則點的軌跡與直線(為常數(shù))有且僅有個公共點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓經(jīng)過點,,點為橢圓的右頂點,直線與橢圓相交于不同于點的兩個點、.
(1)求橢圓的標準方程;
(2)當時,求面積的最大值;
(3)若,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】太極圖被稱為“中華第一圖”.從孔廟大成殿梁柱,到樓觀臺、三茅宮標記物;從道袍、卦攤、中醫(yī)、氣功、武術(shù)到韓國國旗,太極圖無不躍居其上.這種廣為人知的太極圖,其形狀如陰陽兩魚互抱在一起,因而被稱為“陰陽魚太極圖”.在如圖所示的陰陽魚圖案中,陰影部分可表示為,設(shè)點,則的最大值與最小值之差是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某租車公司給出的財務(wù)報表如下:
年度 項目 | 2014年 (1-12月) | 2015年 (1-12月) | 2016年 (1-11月) |
接單量(單) | 14463272 | 40125125 | 60331996 |
油費(元) | 214301962 | 581305364 | 653214963 |
平均每單油費(元) | 14.82 | 14.49 | |
平均每單里程(公里) | 15 | 15 | |
每公里油耗(元) | 0.7 | 0.7 | 0.7 |
有投資者在研究上述報表時,發(fā)現(xiàn)租車公司有空駛情況,并給出空駛率的計算公式為.
(1)分別計算2014,2015年該公司的空駛率的值(精確到0.01%);
(2)2016年該公司加強了流程管理,利用租車軟件,降低了空駛率并提高了平均每單里程,核算截止到11月30日,空駛率在2015年的基礎(chǔ)上降低了20個百分點,問2016年前11個月的平均每單油費和平均每單里程分別為多少?(分別精確到0.01元和0.01公里).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】太極圖是由黑白兩個魚形紋組成的圖案,俗稱陰陽魚,太極圖展現(xiàn)了一種相互轉(zhuǎn)化,相對統(tǒng)一的和諧美,定義:能夠?qū)A的周長和面積同時等分成兩個部分的函數(shù)稱為圓的一個“太極函數(shù)”,則下列有關(guān)說法中:
①對于圓的所有非常數(shù)函數(shù)的太極函數(shù)中,都不能為偶函數(shù);
②函數(shù)是圓的一個太極函數(shù);
③直線所對應(yīng)的函數(shù)一定是圓的太極函數(shù);
④若函數(shù)是圓的太極函數(shù),則
所有正確的是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com