已知實(shí)數(shù)a≠0,函數(shù)f(x)=ax(x-2)2(x∈R)有極大值32,則實(shí)數(shù)a等于______.
27
本題考查函數(shù)的極值.可導(dǎo)函數(shù)極值點(diǎn)處的導(dǎo)數(shù)為0.
f(x)=ax(x2-4x+4)=ax3-4ax2+4ax,
f′(x)=3ax2-8ax+4a=a(3x2-8x+4)=a(3x-2)(x-2).
f′(x)=0,得x1=x2=2.
∴在x1=x2=2處取得極值.把x=2代入驗(yàn)證,極值為0,
因此函數(shù)在x=處取得極值32,即a××(-2)2=32.
解得a=27.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分16分)設(shè)函數(shù))的圖象關(guān)于原點(diǎn)對(duì)稱,且時(shí),取極小值 ,
①求的值;
②當(dāng)時(shí),圖象上是否存在兩點(diǎn),使得過(guò)此兩點(diǎn)處的切線互相垂直?試證明你的結(jié)論。
③若,求證:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)
(1)求函數(shù)f(x)的單調(diào)區(qū)間,并求函數(shù)f(x)的極大值和極小值;
(2)當(dāng)x∈[a+1, a+2]時(shí),不等,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)函數(shù)fn(x)=n2x2(1-x)n(n為正整數(shù)),則fn(x)在[0,1]上的最大值為( )
A.0B.1C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)y=(x2-1)3+1在x=-1處
A.有極大值B.無(wú)極值
C.有極小值D.無(wú)法確定極值情況

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如果函數(shù)y=f(x)=2x3-3x2a的極大值為6,那么a等于
A.6B.0
C.5D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè).令,討論內(nèi)的單調(diào)性并求極值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)的最大值為,最小值為,求。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)時(shí)有極值,那么的值分別為_(kāi)   

查看答案和解析>>

同步練習(xí)冊(cè)答案