【題目】已知為坐標(biāo)原點(diǎn),拋物線的焦點(diǎn)坐標(biāo)為,點(diǎn),在該拋物線上且位于軸的兩側(cè),.
(Ⅰ)證明:直線過定點(diǎn);
(Ⅱ)以,為切點(diǎn)作的切線,設(shè)兩切線的交點(diǎn)為,點(diǎn)為圓上任意一點(diǎn),求的最小值.
【答案】(Ⅰ)證明見解析;(Ⅱ)2.
【解析】
(Ⅰ)先求出拋物線的方程,然后設(shè)直線的方程為,設(shè),(,),聯(lián)立直線和拋物線的方程可得,由韋達(dá)定理可得的值,再根據(jù),可得出b的值,進(jìn)而可得出直線恒過定點(diǎn);
(Ⅱ)以為切點(diǎn)的切線方程為,以為切點(diǎn)的切線方程為,聯(lián)立,解得,由(Ⅰ)知,所以兩切線交點(diǎn)的軌跡方程為,進(jìn)而可得出的最小值.
(Ⅰ)根據(jù)題意,,所以.
故拋物線.
由題意設(shè)直線的方程為.
由,消去整理得.
顯然.
設(shè),(,),則,
所以.
由題意得,解得或(舍去).
所以直線的方程為,故直線過定點(diǎn);
(Ⅱ)因為,所以,,
故以為切點(diǎn)的切線方程為,即,
以為切點(diǎn)的切線方程為,即
聯(lián)立,解得.
又因為,
所以兩切線交點(diǎn)的軌跡方程為.
因為圓心到直線的距離為3,
所以圓上一點(diǎn)到直線的最小距離為,
故的最小值為2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖.已知四棱錐的底面為直角梯形,平面平面,,,且,,,的中點(diǎn)分別是,.
(1)求證:平面;
(2)求二面的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)O為坐標(biāo)原點(diǎn),動點(diǎn)M在橢圓C上,過M作x軸的垂線,垂足為N,點(diǎn)P滿足.
(1)求點(diǎn)P的軌跡方程;
(2)設(shè)點(diǎn)在直線上,且.證明:過點(diǎn)P且垂直于OQ的直線過C的左焦點(diǎn)F.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司以客戶滿意為出發(fā)點(diǎn),隨機(jī)抽選2000名客戶,以調(diào)查問卷的形式分析影響客戶滿意度的各項因素.每名客戶填寫一個因素,下圖為客戶滿意度分析的帕累托圖.帕累托圖用雙直角坐標(biāo)系表示,左邊縱坐標(biāo)表示頻數(shù),右邊縱坐標(biāo)表示頻率,分析線表示累計頻率,橫坐標(biāo)表示影響滿意度的各項因素,按影響程度(即頻數(shù))的大小從左到右排列,以下結(jié)論正確的個數(shù)是( ).
①35.6%的客戶認(rèn)為態(tài)度良好影響他們的滿意度;
②156位客戶認(rèn)為使用禮貌用語影響他們的滿意度;
③最影響客戶滿意度的因素是電話接起快速;
④不超過10%的客戶認(rèn)為工單派發(fā)準(zhǔn)確影響他們的滿意度.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某科研小組為了研究一種治療新冠肺炎患者的新藥的效果,選50名患者服藥一段時間后,記錄了這些患者的生理指標(biāo)和的數(shù)據(jù),并統(tǒng)計得到如下的列聯(lián)表(不完整):
合計 | |||
12 | 36 | ||
7 | |||
合計 |
其中在生理指標(biāo)的人中,設(shè)組為生理指標(biāo)的人,組為生理指標(biāo)的人,他們服用這種藥物后的康復(fù)時間(單位:天)記錄如下:
組:10,11,12,13,14,15,16
組:12,13,15,16,17,14,25
(Ⅰ)填寫上表,并判斷是否有95%的把握認(rèn)為患者的兩項生理指標(biāo)和有關(guān)系;
(Ⅱ)從,兩組隨機(jī)各選1人,組選出的人記為甲,組選出的人記為乙,求甲的康復(fù)時間比乙的康復(fù)時間長的概率.
附:,其中.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】考前回歸課本復(fù)習(xí)過程中,一數(shù)學(xué)老師在黑板上寫了下面四個函數(shù):①;②;③;④.然后說了四句話:第一句:“該函數(shù)定義域為,還是奇函數(shù)”.第二句:“該函數(shù)為偶函數(shù),值域不是”.第三句:“該函數(shù)定義域為,還是單調(diào)函數(shù)”.第四句:“該函數(shù)的圖象有對稱軸,值域是”,若老師的每一句話只說對了一半,則這四個函數(shù)中符合老師說的所有函數(shù)的編號為______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“垛積術(shù)”是我國古代數(shù)學(xué)的重要成就之一.南宋數(shù)學(xué)家楊輝在《詳解九章算法》中記載了“方垛”的計算方法:“果子以垛,下方十四個,問計幾何?術(shù)曰:下方加一,乘下方為平積.又加半為高,以乘下方為高積.如三而一.”意思是說,將果子以方垛的形式擺放(方垛即每層均為正方形,自下而上每層每邊果子數(shù)依次遞減1個,最上層為1個),最下層每邊果子數(shù)為14個,問共有多少個果子?計算方法用算式表示為.利用“方垛”的計算方法,可計算最下層每邊果子數(shù)為14個的“三角垛”(三角垛即每層均為正三角形,自下而上每層每邊果子數(shù)依次遞減1個,最上層為1個)共有果子數(shù)為( )
A.420個B.560個C.680個D.1015個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】A、B兩同學(xué)參加數(shù)學(xué)競賽培訓(xùn),在培訓(xùn)期間,他們參加了8次測驗,成績(單位:分)記錄如下:
A 71 62 72 76 63 70 85 83
B 73 84 75 73 78 76 85
B同學(xué)的成績不慎被墨跡污染(,分別用m,n表示).
(1)用莖葉圖表示這兩組數(shù)據(jù),現(xiàn)從A、B兩同學(xué)中選派一人去參加數(shù)學(xué)競賽,你認(rèn)為選派誰更好?請說明理由(不用計算);
(2)若B同學(xué)的平均分為78,方差,求m,n.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com