【題目】函數(shù)上的奇函數(shù),當(dāng)時,.

1)求的解析式并畫出函數(shù)的圖像;

2)求的根的個數(shù).

【答案】1;圖像見詳解;(2)見詳解.

【解析】

1)由,得,根據(jù)已知解析式,得到,再由函數(shù)是奇函數(shù),即可得出解析式;根據(jù)解析式作出圖像即可;

2)由(1)的圖像,得到與直線交點個數(shù)的情況,再由方程的根的個數(shù),即是與直線的交點個數(shù),即可得出結(jié)果.

1)若,則,因為當(dāng)時,

所以

又函數(shù)上的奇函數(shù),所以,因此;

易知

所以;

畫出其圖像如下:

2)由(1)中圖像可得:當(dāng)時,與直線有一個交點;

當(dāng)時,與直線有兩個交點;

當(dāng)時,與直線有三個交點;

因為方程的根的個數(shù),即是與直線的交點個數(shù),

因此,當(dāng)時,的根的個數(shù)為個;

當(dāng)時,的根的個數(shù)為個;

當(dāng)時,的根的個數(shù)為個;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形為矩形,四邊形為直角梯形,,,,,.

(1)求證:

(2)求證:平面;

(3)若二面角的大小為,求直線與平面所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C 的一個焦點與拋物線y2=-4x的焦點相同,且橢圓C上一點與橢圓C的左,右焦點F1F2構(gòu)成的三角形的周長為.

(1)求橢圓C的方程;

(2)若直線lykxm(k,mR)與橢圓C交于AB兩點,O為坐標(biāo)原點,AOB的重心G滿足: ,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分別是BCBB1,A1D的中點.

1)證明:MN∥平面C1DE;

2)求點C到平面C1DE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場對顧客實行購物優(yōu)惠活動規(guī)定,一次購物付款總額

1)如果標(biāo)價總額不超過200元,則不給予優(yōu)惠;

2)如果標(biāo)價總額超過200元但不超過500元,則按標(biāo)價總額給予9折優(yōu)惠;

3)如果標(biāo)價總額超過500元,其500元內(nèi)的按第(2)條給予優(yōu)惠,超過500元的部分給予8折優(yōu)惠.

某人兩次去購物,分別付款180元和423元,假設(shè)他一次性購買上述兩次同樣的商品,則應(yīng)付款(

A.550B.560C.570D.580

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在上的奇函數(shù),當(dāng)時,,其中

(1)當(dāng)時,__________;

2)若的值域是,則的取值范圍為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域為的奇函數(shù)的導(dǎo)函數(shù)為,當(dāng)時,,若,,則,,的大小關(guān)系正確的是(   )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某區(qū)的區(qū)人大代表有教師6人,分別來自甲、乙、丙、丁四個學(xué)校,其中甲校教師記為,乙校教師記為,丙校教師記為,丁校教師記為.現(xiàn)從這6名教師代表中選出3名教師組成十九大報告宣講團,要求甲、乙、丙、丁四個學(xué)校中,每校至多選出1.

(1)請列出十九大報告宣講團組成人員的全部可能結(jié)果;

(2)求教師被選中的概率;

(3)求宣講團中沒有乙校教師代表的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)部分圖象如圖所示.

1)求函數(shù)的解析式及的單調(diào)遞增區(qū)間;

2)把函數(shù)圖象上點的橫坐標(biāo)擴大到原來的2倍(縱坐標(biāo)不變),再向左平移個單位,得到函數(shù)的圖象,求關(guān)于x的方程上所有的實數(shù)根之和.

查看答案和解析>>

同步練習(xí)冊答案