【題目】如圖,四邊形為矩形,四邊形為直角梯形,,,,,.

(1)求證:

(2)求證:平面;

(3)若二面角的大小為,求直線與平面所成的角.

【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)30°.

【解析】試題分析:(1)根據(jù)矩形性質(zhì)得,再由條件,利用線面垂直判定定理得平面,即得結(jié)論(2)先根據(jù)線線平行得線面平行:平面平面,再根據(jù)線面平行得面面平行平面平面即得線面平行(3)過(guò)的延長(zhǎng)線垂直,則根據(jù)二面角定義得就是二面角的平面角,再根據(jù)面面垂直判定與性質(zhì)定理得平面,是直線與平面所成的角,最后通過(guò)解三角形得結(jié)果

試題解析:證明:(∵四邊形為矩形,∴,

又∵,平面,,平面

平面,

,平面,平面,平面

∵四邊形是矩形,∴,又平面,

平面,平面,

,平面,,∴平面平面

平面平面

)過(guò)的延長(zhǎng)線垂直,是垂足,連結(jié)

,就是二面角的平面角,

,,,

,,,

平面,平面

∴平面平面,又平面平面,

平面,

是直線與平面所成的角,

,,

∴直線與平面所成的角為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為, 為過(guò)定點(diǎn)的兩條直線.

(1)若與拋物線均無(wú)交點(diǎn),且,求直線的斜率的取值范圍;

(2)若與拋物線交于兩個(gè)不同的點(diǎn),以為直徑的圓過(guò)點(diǎn),求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系上,有一點(diǎn)列P0 , P1 , P2 , P3 , …,Pn1 , Pn , 設(shè)點(diǎn)Pk的坐標(biāo)(xk , yk)(k∈N,k≤n),其中xk、yk∈Z,記△xk=xk﹣xk1 , △yk=yk﹣yk1 , 且滿足|△xk||△yk|=2(k∈N* , k≤n);
(1)已知點(diǎn)P0(0,1),點(diǎn)P1滿足△y1>△x1>0,求P1的坐標(biāo);
(2)已知點(diǎn)P0(0,1),△xk=1(k∈N* , k≤n),且{yk}(k∈N,k≤n)是遞增數(shù)列,點(diǎn)Pn在直線l:y=3x﹣8上,求n;
(3)若點(diǎn)P0的坐標(biāo)為(0,0),y2016=100,求x0+x1+x2+…+x2016的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】.函數(shù)fx=ex+x2+x+1gx)的圖象關(guān)于直線2x﹣y﹣3=0對(duì)稱(chēng),P,Q分別是函數(shù)fx),gx)圖象上的動(dòng)點(diǎn),則|PQ|的最小值為__

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 分別為橢圓的左、右焦點(diǎn),橢圓離心率,直線通過(guò)點(diǎn),且傾斜角是45°.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若直線與橢圓交于兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)二次函數(shù)滿足條件:

(1)當(dāng)時(shí),且;

(2)當(dāng)時(shí),;

(3)在R上的最小值為0.

求最大的m(m>1),使得存在,只要,就有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,以相同的長(zhǎng)度單位建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.

(1)設(shè)為參數(shù),若,求直線的參數(shù)方程;

(2)已知直線與曲線交于,設(shè),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓的左、右焦點(diǎn)為,右頂點(diǎn)為,上頂點(diǎn)為,若, 軸垂直,且.

(1)求橢圓方程;

(2)過(guò)點(diǎn)且不垂直于坐標(biāo)軸的直線與橢圓交于兩點(diǎn),已知點(diǎn),當(dāng)時(shí),求滿足的直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 向量 =(Sn , 1), =(2n﹣1, ),滿足條件
(1)求數(shù)列{an}的通項(xiàng)公式,
(2)設(shè)函數(shù)f(x)=( x , 數(shù)列{bn}滿足條件b1=1,f(bn+1)=
①求數(shù)列{bn}的通項(xiàng)公式,
②設(shè)cn= ,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案