已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到焦點(diǎn)距離的最大值為,最小值為.
(Ⅰ)求橢圓方程;
(Ⅱ)若直線與橢圓交于不同的兩點(diǎn)、,且線段的垂直平分線過定點(diǎn),求的取值范圍.
(Ⅰ)(Ⅱ)
解析試題分析:(Ⅰ)本小題通過告訴兩個(gè)條件.到焦點(diǎn)最長和最短的焦半徑,即可求得所求的橢圓方程.本小題的已知條件要記清不要混淆.(Ⅱ)本小題是直線與橢圓的關(guān)系,常用的方法就是聯(lián)立方程,判別式大于零,韋達(dá)定理.再根據(jù)弦MN的中垂線恒過一點(diǎn).根據(jù)中點(diǎn),定點(diǎn),斜率其中的兩個(gè)條件所以可以寫出垂直平分線的直線方程.再將另一個(gè)代入就可得到一個(gè)關(guān)于k,m的等式.再結(jié)合判別式得到不等式即可得到k的取值范圍.本題的運(yùn)算量較大些.要認(rèn)真做到“步步為贏”.
試題解析:(I)由題意設(shè)橢圓的標(biāo)準(zhǔn)方程為
,
4分
(Ⅱ)設(shè)
由
消去并整理得 6分
∵直線與橢圓有兩個(gè)交點(diǎn)
,即 8分
又
中點(diǎn)的坐標(biāo)為 10分
設(shè)的垂直平分線方程:
在上
即
12分
將上式代入得
即或
的取值范圍為 14分
考點(diǎn):1.待定系數(shù)求橢圓方程.2.直線與橢圓的方程.3.韋達(dá)定理4.不等式的解法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為,點(diǎn)是點(diǎn)關(guān)于軸的對稱點(diǎn),過點(diǎn)的直線交拋物線于兩點(diǎn)。
(Ⅰ)試問在軸上是否存在不同于點(diǎn)的一點(diǎn),使得與軸所在的直線所成的銳角相等,若存在,求出定點(diǎn)的坐標(biāo),若不存在說明理由。
(Ⅱ)若的面積為,求向量的夾角;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
)如圖,橢圓:,、、、為橢圓的頂點(diǎn)
(Ⅰ)若橢圓上的點(diǎn)到焦點(diǎn)距離的最大值為,最小值為,求橢圓方程;
(Ⅱ)已知:直線相交于,兩點(diǎn)(不是橢圓的左右頂點(diǎn)),并滿足 試研究:直線是否過定點(diǎn)? 若過定點(diǎn),請求出定點(diǎn)坐標(biāo),若不過定點(diǎn),請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心為直角坐標(biāo)系的原點(diǎn),焦點(diǎn)在軸上,它的一個(gè)頂點(diǎn)到兩個(gè)焦點(diǎn)的距離分別是7和1.
(1)求橢圓的方程;
(2)若為橢圓的動(dòng)點(diǎn),為過且垂直于軸的直線上的點(diǎn),(為橢圓的離心率),求點(diǎn)的軌跡方程,并說明軌跡是什么曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上的拋物線過點(diǎn).
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若拋物線與直線交于、兩點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線y2=-x與直線y=k(x+1)交于A、B兩點(diǎn).
(1)求證:OA⊥OB;
(2)當(dāng)DAOB的面積等于時(shí),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓,若橢圓的右頂點(diǎn)為圓的圓心,離心率為.
(1)求橢圓的方程;
(2)若存在直線,使得直線與橢圓分別交于兩點(diǎn),與圓分別交于兩點(diǎn),點(diǎn)在線段上,且,求圓的半徑的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在軸上方有一段曲線弧,其端點(diǎn)、在軸上(但不屬于),對上任一點(diǎn)及點(diǎn),,滿足:.直線,分別交直線于,兩點(diǎn).
(Ⅰ)求曲線弧的方程;
(Ⅱ)求的最小值(用表示);
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com