【題目】已知函數(shù)
(1)求函數(shù)的極值
(2)定義:若函數(shù)在區(qū)間 上的取值范圍為,則稱區(qū)間為函數(shù)的“美麗區(qū)間”.試問函數(shù)在上是否存在“美麗區(qū)間”?若存在,求出所有符合條件的“美麗區(qū)間”;若不存在,請說明理由
【答案】(1)當(dāng)時,函數(shù)有極大值為1,當(dāng)時,函數(shù)有極小值為.(2)見解析.
【解析】
(1)利用函數(shù)的正負(fù)性,來求原函數(shù)的單調(diào)區(qū)間,可得函數(shù)的極值;
(2)據(jù)“域同區(qū)間”的定義得到,則方程有兩個大于3的相異實根.,然后利用方程根的情況列式求解,即可得出結(jié)論.
(1)因為,
所以 .
令,可得或.
則在上的變化情況為:
1 | 3 | ||||
+ | 0 | - | 0 | + | |
增函數(shù) | 1 | 減函數(shù) | 增函數(shù) |
所以當(dāng)時,函數(shù)有極大值為1,當(dāng)時,函數(shù)有極小值為.
(2)假設(shè)函數(shù)在上存在“美麗區(qū)間” ,
由(1)知函數(shù)在上單調(diào)遞增.
所以即
也就是方程有兩個大于3的相異實根.
設(shè) ,
則.
令 ,解得,.
當(dāng)時, ,當(dāng)時, ,
所以函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.
因為,,,
所以函數(shù)在區(qū)間上只有一個零點(diǎn).
這與方程有兩個大于3的相異實根相矛盾,所以假設(shè)不成立.
所以函數(shù)在上不存在“美麗區(qū)間”.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題:(1)正方形的四條邊相等;(2)有兩個角是的三角形是等腰直角三角形;(3)正數(shù)的平方根不等于0;(4)至少有一個正整數(shù)是偶數(shù);是全稱量詞命題的有________;是存在量詞命題的有________.(填序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某IT從業(yè)者繪制了他在26歲~35歲(2009年~2018年)之間各年的月平均收入(單位:千元)的散點(diǎn)圖:
(1)由散點(diǎn)圖知,可用回歸模型擬合與的關(guān)系,試根據(jù)附注提供的有關(guān)數(shù)據(jù)建立關(guān)于的回歸方程
(2)若把月收入不低于2萬元稱為“高收入者”.
試?yán)茫?/span>1)的結(jié)果,估計他36歲時能否稱為“高收入者”?能否有95%的把握認(rèn)為年齡與收入有關(guān)系?
附注:①.參考數(shù)據(jù):,,,,,,,其中,取,
②.參考公式:回歸方程中斜率和截距的最小二乘估計分別為:,
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
③..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的不等式,下列結(jié)論正確的是( )
A.當(dāng)時,不等式的解集為
B.當(dāng),時,不等式的解集為
C.當(dāng)時,不等式的解集可以為的形式
D.不等式的解集恰好為,那么
E.不等式的解集恰好為,那么
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x-3|-|x+1|.
(1)求f(x)的值域;
(2)解不等式:f(x)>0;
(3)若直線y=a與f(x)的圖像無交點(diǎn),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面是矩形,面底面,且是邊長為的等邊三角形, 在上,且面.
(1)求證: 是的中點(diǎn);
(2)在上是否存在點(diǎn),使二面角為直角?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)在研究函數(shù)f(x)=(x∈R)時,分別給出下面幾個結(jié)論:
①等式f(-x)=-f(x)在x∈R時恒成立;
②函數(shù)f(x)的值域為(-1,1);
③若x1≠x2,則一定有f(x1)≠f(x2);
④方程f(x)=x在R上有三個根.
其中正確結(jié)論的序號有______.(請將你認(rèn)為正確的結(jié)論的序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某鎮(zhèn)在政府“精準(zhǔn)扶貧”的政策指引下,充分利用自身資源,大力發(fā)展養(yǎng)殖業(yè),以增加收入,政府計劃共投入72萬元,全部用于甲、乙兩個合作社,每個合作社至少要投入15萬元,其中甲合作社養(yǎng)魚,乙合作社養(yǎng)雞,在對市場進(jìn)行調(diào)研分析發(fā)現(xiàn)養(yǎng)魚的收益M、養(yǎng)雞的收益N與投入a(單位:萬元)滿足.設(shè)甲合作社的投入為x(單位:萬元),兩個合作社的總收益為f(x)(單位:萬元).
(1)當(dāng)甲合作社的投入為25萬元時,求兩個合作社的總收益;
(2)試問如何安排甲、乙兩個合作社的投入,才能使總收益最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com