已知斜三棱柱的底面是直角三角形, ,側(cè)棱與底面所成角為,點在底面上的射影落在上.
(1)求證:平面;
(2)若,且當(dāng)時,求二面角的大小.
(1)詳見解析;(2).
解析試題分析:(1)由可得平面;(2)建立空間直角坐標(biāo)系,分別求出平面與平面的法向量,利用求解,注意坐標(biāo)系的建立須準(zhǔn)確,點、線的坐標(biāo)表示正確.
試題解析:(1)∵點在底面上的射影落在上,∴平面,
平面,∴又∵∴,,
∴平面. 4分
(2)∵平面 ∴ 即
以為原點,為x軸,為軸,過點且垂直于平面的直線為軸,
建立空間直角坐標(biāo)系,則,,,,
.顯然,平面的法向量. 7分
設(shè)平面的法向量為,
由,即,
10分
∴,
∴二面角的大小是. 12分
考點:1.線面垂直;2.二面角的求解;3.空間向量在立體幾何中的應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)如圖,ABC在平面外,AB∩=P,BC∩=Q,AC∩=R,求證:P,Q,R三點共線.
(2)如圖,空間四邊形ABCD中,E,F分別是AB和CB上的點,G,H分別是CD和AD上的點, 且EH與FG相交于點K. 求證:EH,BD,FG三條直線相交于同一點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直三棱柱ABC-A1B1C1中,點M是A1B的中點,點N是B1C的中點,連接MN
(Ⅰ)證明:MN//平面ABC;
(Ⅱ)若AB=1,AC=AA1=,BC=2,求二面角A—A1C—B的余弦值的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在六面體ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,ED⊥DG,EF∥DG.且AB=AD=DE=DG=2,AC=EF=1. (1)求證:BF∥平面ACGD; (2)求二面角DCGF的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖, 三棱柱ABC-A1B1C1中, 側(cè)棱A1A⊥底面ABC,且各棱長均相等. D, E, F分別為棱AB, BC, A1C1的中點.
(Ⅰ) 證明EF//平面A1CD;
(Ⅱ) 證明平面A1CD⊥平面A1ABB1;
(Ⅲ) 求直線BC與平面A1CD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直三棱柱ABC—A1B1C1,AB=AC=1,∠BAC=90°,連結(jié)A1B與∠A1BC=60°.
(Ⅰ)求證:AC⊥A1B;
(Ⅱ)設(shè)D是BB1的中點,求三棱錐D-A1BC1的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com