如圖,在直三棱柱ABC—A1B1C1,AB=AC=1,∠BAC=90°,連結(jié)A1B與∠A1BC=60°.
(Ⅰ)求證:AC⊥A1B;
(Ⅱ)設(shè)D是BB1的中點(diǎn),求三棱錐D-A1BC1的體積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知斜三棱柱的底面是直角三角形, ,側(cè)棱與底面所成角為,點(diǎn)在底面上的射影落在上.
(1)求證:平面;
(2)若,且當(dāng)時,求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在四棱錐中,側(cè)面底面,,為中點(diǎn),底面是直角梯形,,,,.
(1)求證:面;
(2)求證:面面;
(3)設(shè)為棱上一點(diǎn),,試確定的值使得二面角為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,、為圓柱的母線,是底面圓的直徑,、分別是、的中點(diǎn),.
(1)證明:;
(2)證明:;
(3)求四棱錐與圓柱的體積比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱柱中,平面.
(Ⅰ)從下列①②③三個條件中選擇一個做為的充分條件,并給予證明;
①,②;③是平行四邊形.
(Ⅱ)設(shè)四棱柱的所有棱長都為1,且為銳角,求平面與平面所成銳二面角的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,平面四邊形的4個頂點(diǎn)都在球的表面上,為球的直徑,為球面上一點(diǎn),且平面 ,,點(diǎn)為的中點(diǎn).
(1) 證明:平面平面;
(2) 求點(diǎn)到平面的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com