若數(shù)列的前項(xiàng)和滿(mǎn)足,等差數(shù)列滿(mǎn)足.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和為.
(1),;(2).

試題分析:(1)利用公式,將代入求出,當(dāng)時(shí),列出,將兩式相減,得出數(shù)列的遞推公式,判定數(shù)列形式,寫(xiě)出通項(xiàng),因?yàn)閿?shù)列就是等差數(shù)列,所以設(shè)首相,公差,,列出關(guān)于首項(xiàng)與公差的方程組,求解;
(2),此數(shù)列為等差等比數(shù)列,所以方法是錯(cuò)位相減法求和,先列出,再列出,兩式相減,再求和,化簡(jiǎn).
試題解析:(1)當(dāng)時(shí),,∴
當(dāng)時(shí),,即
∴數(shù)列是以為首項(xiàng),3為公比的等比數(shù)列,∴,     4分
設(shè)的公差為
         6分
(2),

②         8分
由①②得,
         12分;2.等差數(shù)列;3.錯(cuò)位相減法求和.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知等差數(shù)列{}的首項(xiàng)為a.設(shè)數(shù)列的前n項(xiàng)和為Sn,且對(duì)任意正整數(shù)n都有
(1)求數(shù)列{}的通項(xiàng)公式及Sn;
(2)是否存在正整數(shù)n和k,使得成等比數(shù)列?若存在,求出n和k的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)各項(xiàng)均為正數(shù)的數(shù)列的前n項(xiàng)和為Sn,已知,且對(duì)一切都成立.
(1)若λ=1,求數(shù)列的通項(xiàng)公式;
(2)求λ的值,使數(shù)列是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

數(shù)列滿(mǎn)足.
(1)求的表達(dá)式;
(2)令,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知首項(xiàng)為正數(shù)的等差數(shù)列中,.則當(dāng)取最大值時(shí),數(shù)列的公差
        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知表示數(shù)列的前項(xiàng)的和,若對(duì)任意滿(mǎn)足
=(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在等差數(shù)列中,,其前項(xiàng)和為,若,則的值等于(  )
A.2011B.-2012C.2014D.-2013

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在數(shù)列中,,若為等差數(shù)列,則數(shù)列的第10項(xiàng)為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)等差數(shù)列的前項(xiàng)和為,若,則等于(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案