【題目】如圖,四邊形中, = == 分別在上, ,現(xiàn)將四邊形沿折起,使.
(1)若,在折疊后的線段上是否存在一點,使得平面?若存在,求出的值;若不存在,說明理由;
(2)求三棱錐的體積的最大值,并求出此時點到平面的距離.
【答案】(1)見解析;(2)點到平面的距離為.
【解析】試題分析:本題考查空間線面關系的判定與證明、體積公式的應用.(1)把平面轉化為線線平行,再利用線線平行的性質即可得出結論,也可以先分析出結論,再進行證明;(2)先根據(jù)題意得到= =, 時,體積有最大值,此時可得到=,再利用三棱錐體積公式,利用等體積的方法借助轉換頂點的方法求出三棱錐的高即可.
解析:
(1) 上存在一點,使得平面,
此時.
理由如下:
當時, ,
過點作交于點,連結,
則有==,
∵,可得,
故,
又,
故有,
故四邊形為平行四邊形,
∴,
又∴平面平面,
故有∴平面成立.
(2)設,
∴= = ,
故= =,
∴當時, 有最大值,且最大值為3,
此時=,
在中,由余弦定理得
===,
∴=,
= =,
設點到平面的距離為,
由于,
即=,
∴=,即點到平面的距離為.
科目:高中數(shù)學 來源: 題型:
【題目】直線l:ax+ y﹣1=0與x,y軸的交點分別為A,B,直線l與圓O:x2+y2=1的交點為C,D.給出下列命題:p:a>0,S△AOB= ,q:a>0,|AB|<|CD|.則下面命題正確的是( )
A.p∧q
B.¬p∧¬q
C.p∧¬q
D.¬p∧q
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知正方體ABCD-A1B1C1D1的棱長為3,M,N分別是棱AA1,AB上的點,且AM=AN=1.
(1)證明:M,N,C,D1四點共面;
(2)平面MNCD1將此正方體分為兩部分,求這兩部分的體積之比.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列的前項的和為,公差,若,,成等比數(shù)列,;數(shù)列滿足:對于任意的,等式都成立.
(1)求數(shù)列的通項公式;
(2)證明:數(shù)列是等比數(shù)列;
(3)若數(shù)列滿足,試問是否存在正整數(shù),(其中),使,,成等比數(shù)列?若存在,求出所有滿足條件的數(shù)組;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近幾年,京津冀等地數(shù)城市指數(shù)“爆表”,尤其2015年污染最重.為了探究車流量與PM2.5的濃度是否相關,現(xiàn)采集到北方某城市2015年12月份某星期星期一到星期日某一時間段車流量與PM2.5的數(shù)據(jù)如表:
時間 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 |
車流量x(萬輛) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
PM2.5的濃度y(微克/立方米) | 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(Ⅰ)由散點圖知y與x具有線性相關關系,求y關于x的線性回歸方程;
(Ⅱ)(。├茫á瘢┧蟮幕貧w方程,預測該市車流量為8萬輛時PM2.5的濃度;
(ⅱ)規(guī)定:當一天內PM2.5的濃度平均值在(0,50]內,空氣質量等級為優(yōu);當一天內PM2.5的濃度平均值在(50,100]內,空氣質量等級為良.為使該市某日空氣質量為優(yōu)或者為良,則應控制當天車流量在多少萬輛以內?(結果以萬輛為單位,保留整數(shù).)
參考公式:回歸直線的方程是,其中, .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為a,E、F、G、H分別為AB、BC、CD、DA的中點.若沿EF、FG、GH、HE將四角折起,試問能折成一個四棱錐嗎?為什么?你從中能得到什么結論?對于圓錐有什么類似的結論?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓心在軸上且通過點的圓與直線相切.
(1)求圓的方程;
(2)已知直線經(jīng)過點,并且被圓C截得的弦長為,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于區(qū)間,若函數(shù)同時滿足:①在上是單調函數(shù);②函數(shù),的值域是,則稱區(qū)間為函數(shù)的“保值”區(qū)間.
(1)求函數(shù)的所有“保值”區(qū)間.
(2)函數(shù)是否存在“保值”區(qū)間?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com