【題目】已知數(shù)列的前項和,數(shù)列是正項等比數(shù)列,且,.
(1)求數(shù)列和的通項公式;
(2)記,是否存在正整數(shù),使得對一切,都有成立?若存在,求出M的最小值;若不存在,請說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】平面圖形很多可以推廣到空間中去,例如正三角形可以推廣到正四面體,圓可以推廣到球,平行四邊形可以推廣到平行六面體,直角三角形也可以推廣到直角四面體,如果四面體中棱兩兩垂直,那么稱四面體為直角四面體. 請類比直角三角形中的性質(zhì)給出2個直角四面體中的性質(zhì),并給出證明.(請在結(jié)論中選擇1個,結(jié)論4,5中選擇1個,寫出它們在直角四面體中的類似結(jié)論,并給出證明,多選不得分,其中表示斜邊上的高,分別表示內(nèi)切圓與外接圓的半徑)
直角三角形 | 直角四面體 | |
條件 | ||
結(jié)論1 | ||
結(jié)論2 | ||
結(jié)論3 | ||
結(jié)論4 | ||
結(jié)論5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(12分)已知集合A={x|-2<x<0},B={x|y=}
(1)求(RA)∩B;
(2)若集合C={x|a<x<2a+1}且CA,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱中, , ,點為的中點,點為上一動點.
(1)是否存在一點,使得線段平面?若存在,指出點的位置,若不存在,請說明理由.
(2)若點為的中點且,求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,以原點為極點,以軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為:.
(1)若曲線的參數(shù)方程為(為參數(shù)),求曲線的直角坐標方程和曲線的普通方程;
(2)若曲線的參數(shù)方程為(為參數(shù)),,且曲線與曲線的交點分別為、,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),且函數(shù)是偶函數(shù),設(shè)
(1)求的解析式;
(2)若不等式≥0在區(qū)間(1,e2]上恒成立,求實數(shù)的取值范圍;
(3)若方程有三個不同的實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學用“五點法”畫函數(shù)在某一個周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如下表:
0 | |||||
0 | 2 | 0 | 0 |
(1)請將上表數(shù)據(jù)補充完整,填寫在相應位置,并求出函數(shù)的解析式;
(2)把的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再把得到的圖象向左平移個單位長度,得到函數(shù)的圖象,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了全面貫徹黨的教育方針,堅持以人文本、德育為先,全面推進素質(zhì)教育,讓學生接觸自然,了解社會,拓寬視野,豐富知識,提高社會實踐能力和綜合素質(zhì),減輕學生過重負擔,培養(yǎng)學生興趣愛好,豐富學生的課余生活,使廣大學生在社會實踐中,提高創(chuàng)新精神和實踐能力,樹立學生社會責任感,因此學校鼓勵學生利用課余時間參加社會活動實踐。寒假歸來,某校高三(2)班班主任收集了所有學生參加社會活動信息,整理出如圖所示的圖。
(1)求高三(2)班同學人均參加社會活動的次數(shù);
(2)求班上的小明同學僅參加1次社會活動的概率;
(3)用分層抽樣的方法從班上參加活動2次及以上
的同學中抽取一個容量為5的樣本,從這5人中任選3人,其中僅有兩人參加2次活動的概率。.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列的各項均為正數(shù),且的前項和是.
(1)若是遞增數(shù)列,求的取值范圍;
(2)若,且對任意,都有,證明: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com