【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為:.
(1)若曲線(xiàn)的參數(shù)方程為(為參數(shù)),求曲線(xiàn)的直角坐標(biāo)方程和曲線(xiàn)的普通方程;
(2)若曲線(xiàn)的參數(shù)方程為(為參數(shù)),,且曲線(xiàn)與曲線(xiàn)的交點(diǎn)分別為、,求的取值范圍.
【答案】(1)曲線(xiàn)的直角坐標(biāo)方程為:
曲線(xiàn)的普通方程為:.
(2)
【解析】
分析:第一問(wèn)首先應(yīng)用極坐標(biāo)與平面直角坐標(biāo)的轉(zhuǎn)換關(guān)系,求得曲線(xiàn)的直角坐標(biāo)方程,
之后對(duì)曲線(xiàn)的參數(shù)方程進(jìn)行消參,求得其普通方程;第二問(wèn)將曲線(xiàn)的參數(shù)方程代入的方程,得到關(guān)于的關(guān)系式,利用韋達(dá)定理求得兩個(gè)和與兩根積的值,之后應(yīng)用參數(shù)的幾何意義以及題中所求得的范圍,最后借助于對(duì)三角函數(shù)值域的求解求得結(jié)果.
詳解:(1)
曲線(xiàn)的直角坐標(biāo)方程為:
曲線(xiàn)的普通方程為:
(2)將的參數(shù)方程:代入的方程:得:
由的幾何意義可得:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】節(jié)能減排以來(lái),蘭州市100戶(hù)居民的月平均用電量單位:度,以分組的頻率分布直方圖如圖.
求直方圖中x的值;求月平均用電量的眾數(shù)和中位數(shù);
估計(jì)用電量落在中的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】由中央電視臺(tái)綜合頻道()和唯眾傳媒聯(lián)合制作的《開(kāi)講啦》是中國(guó)首檔青年電視公開(kāi)課,每期節(jié)目由一位知名人士講述自己的故事,分享他們對(duì)于生活和生命的感悟,給予中國(guó)青年現(xiàn)實(shí)的討論和心靈的滋養(yǎng),討論青年們的人生問(wèn)題,同時(shí)也在討論青春中國(guó)的社會(huì)問(wèn)題,受到青年觀眾的喜愛(ài),為了了解觀眾對(duì)節(jié)目的喜愛(ài)程度,電視臺(tái)隨機(jī)調(diào)查了兩個(gè)地區(qū)共100名觀眾,得到如下的列聯(lián)表:
非常滿(mǎn)意 | 滿(mǎn)意 | 合計(jì) | |
| |||
合計(jì) |
已知在被調(diào)查的100名觀眾中隨機(jī)抽取1名,該觀眾是地區(qū)當(dāng)中“非常滿(mǎn)意”的觀眾的概率為0.35,且.
(1)現(xiàn)從100名觀眾中用分層抽樣的方法抽取20名進(jìn)行問(wèn)卷調(diào)查,則應(yīng)抽取“滿(mǎn)意”的地區(qū)的人數(shù)各是多少?
(2)在(1)抽取的“滿(mǎn)意”的觀眾中,隨機(jī)選出2人進(jìn)行座談,求至少有1名是地區(qū)觀眾的概率?
(3)完成上述表格,并根據(jù)表格判斷是否有90%的把握認(rèn)為觀眾的滿(mǎn)意程度與所在地區(qū)有關(guān)系?
附:參考公式:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問(wèn)題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓的離心率為, , 分別為橢圓的上頂點(diǎn)和右焦點(diǎn), 的面積為,直線(xiàn)與橢圓交于另一個(gè)點(diǎn),線(xiàn)段的中點(diǎn)為.
(1)求直線(xiàn)的斜率;
(2)設(shè)平行于的直線(xiàn)與橢圓交于不同的兩點(diǎn), ,且與直線(xiàn)交于點(diǎn),求證:存在常數(shù),使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和,數(shù)列是正項(xiàng)等比數(shù)列,且,.
(1)求數(shù)列和的通項(xiàng)公式;
(2)記,是否存在正整數(shù),使得對(duì)一切,都有成立?若存在,求出M的最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是定義在上的奇函數(shù).
(1)若,求的值;
(2)若是函數(shù)的一個(gè)零點(diǎn),求函數(shù)在區(qū)間的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)拋物線(xiàn)的焦點(diǎn)為,準(zhǔn)線(xiàn)為.已知點(diǎn)在拋物線(xiàn)上,點(diǎn)在上, 是邊長(zhǎng)為4的等邊三角形.
(1)求的值;
(2)在軸上是否存在一點(diǎn),當(dāng)過(guò)點(diǎn)的直線(xiàn)與拋物線(xiàn)交于、兩點(diǎn)時(shí), 為定值?若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com