【題目】如圖,已知橢圓C: (a>b>0)的左、右焦點(diǎn)分別為F1、F2,若橢圓C經(jīng)過點(diǎn)(0,),離心率為,直線l過點(diǎn)F2與橢圓C交于A、B兩點(diǎn).

(1)求橢圓C的方程;

(2)若點(diǎn)NF1AF2的內(nèi)心(三角形三條內(nèi)角平分線的交點(diǎn)),求F1NF2F1AF2面積的比值;

(3)設(shè)點(diǎn)A,F(xiàn)2,B在直線x=4上的射影依次為點(diǎn)D,G, E.連結(jié)AE,BD,試問當(dāng)直線l的傾斜角變化時(shí),直線AEBD是否相交于定點(diǎn)T?若是,請求出定點(diǎn)T的坐標(biāo);若不是,請說明理由.

【答案】(1) (2) (3)見解析.

【解析】分析:(1)由題可得b,,結(jié)合橢圓可得橢圓方程;(2)因?yàn)辄c(diǎn)NF1AF2的內(nèi)心,所以點(diǎn)NF1AF2的內(nèi)切圓的圓心,然后結(jié)合內(nèi)切圓的半徑表示三角形的面積可得面積比值;(3)分直線斜率不存在和斜率存在時(shí)兩種情況進(jìn)行討論,連立方程結(jié)合韋達(dá)定理求出AE方程得到定點(diǎn)再驗(yàn)證其在BD上即可得到結(jié)論.

解:(1)由題意,b=,又因?yàn)?/span>,所以,解得a=2,

所以橢圓C的方程為=1.

(2)因?yàn)辄c(diǎn)NF1AF2的內(nèi)心,

所以點(diǎn)NF1AF2的內(nèi)切圓的圓心,設(shè)該圓的半徑為r.

.

(3)若直線l的斜率不存在時(shí),四邊形ABED是矩形,

此時(shí)AEBD交于F2G的中點(diǎn)(,0),

下面證明:當(dāng)直線l的傾斜角變化時(shí),直線AEBD相交于定點(diǎn)T(,0).

設(shè)直線l的方程為y=k(x-1),

化簡得(3+4k2)x2-8k2x+4k2-12=0,

因?yàn)橹本l經(jīng)過橢圓C內(nèi)的點(diǎn)(1,0),所以>0,

設(shè)A(x1,y1),B(x2,y2),

x1+x2=,x1x2=.

由題意,D(4,y1),E(4,y2),

直線AE的方程為y-y2= (x-4),

x=,此時(shí)y=y(tǒng)2+×(-4)=

=0,

所以點(diǎn)T(,0)在直線AE上,

同理可證,點(diǎn)T(,0)在直線BD.

所以當(dāng)直線l的傾斜角變化時(shí),直線AEBD相交于定點(diǎn)T(,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的導(dǎo)函數(shù)為,且對任意的實(shí)數(shù)都有是自然對數(shù)的底數(shù)),且若關(guān)于的不等式的解集中恰有兩個(gè)負(fù)整數(shù),則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),則下列判斷正確的是(

A.為奇函數(shù)

B.對任意,,則有

C.對任意,則有

D.若函數(shù)有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其最小正周期為

(1)求 的表達(dá)式;

(2)將函數(shù)的圖象向右平移個(gè)單位長度后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的倍(縱坐標(biāo)不變),得到函數(shù) 的圖象,若關(guān)于 的方程 在區(qū)間 上有解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,,分別為,的中點(diǎn),,如圖1.以為折痕將折起,使點(diǎn)到達(dá)點(diǎn)的位置,如圖2.

如圖1 如圖2

(1)證明:平面平面;

(2)若平面平面,求直線與平面所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年8月18日,舉世矚目的第18屆亞運(yùn)會在印尼首都雅加達(dá)舉行,為了豐富亞運(yùn)會志愿者的業(yè)余生活,同時(shí)鼓勵(lì)更多的有志青年加入志愿者行列,大會主辦方?jīng)Q定對150名志愿者組織一次有關(guān)體育運(yùn)動的知識競賽(滿分120分)并計(jì)劃對成績前15名的志愿者進(jìn)行獎勵(lì),現(xiàn)將所有志愿者的競賽成績制成頻率分布直方圖,如圖所示,若第三組與第五組的頻數(shù)之和是第二組的頻數(shù)的3倍,試回答以下問題:

(1)求圖中的值;

(2)求志愿者知識競賽的平均成績;

(3)從受獎勵(lì)的15人中按成績利用分層抽樣抽取5人,再從抽取的5人中,隨機(jī)抽取2人在主會場服務(wù),求抽取的這2人中其中一人成績在分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)則使得成立的x的取值范圍是(

A.-1,3B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在P地正西方向8kmA處和正東方向1kmB處各有一條正北方向的公路ACBD,現(xiàn)計(jì)劃在ACBD路邊各修建一個(gè)物流中心EF,為緩解交通壓力,決定修建兩條互相垂直的公路PEPF,設(shè)

為減少對周邊區(qū)域的影響,試確定E,F的位置,使的面積之和最;

為節(jié)省建設(shè)成本,求使的值最小時(shí)AEBF的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列的各項(xiàng)為正數(shù),且.

(1)求的通項(xiàng)公式;

(2)設(shè),求證數(shù)列的前項(xiàng)和<2.

查看答案和解析>>

同步練習(xí)冊答案