【題目】中,,分別為,的中點(diǎn),,如圖1.以為折痕將折起,使點(diǎn)到達(dá)點(diǎn)的位置,如圖2.

如圖1 如圖2

(1)證明:平面平面;

(2)若平面平面,求直線(xiàn)與平面所成角的正弦值。

【答案】(1)見(jiàn)解析;(2)直線(xiàn)與平面所成角的正弦值為.

【解析】

(1)在題圖1中,可證 ,在題圖2中,平面.進(jìn)而得到平面.從而證得平面平面;

(2)可證得平面. .則以為坐標(biāo)原點(diǎn),分別以,,的方向?yàn)?/span>軸、軸、軸的正方向建立如圖所示的空間直角坐標(biāo)系,利用空間向量可求直線(xiàn)與平面所成角的正弦值.

(1)證明:在題圖1中,因?yàn)?/span>,且的中點(diǎn).由平面幾何知識(shí),得.

又因?yàn)?/span>的中點(diǎn),所以

在題圖2中,,,且,

所以平面,

所以平面.

又因?yàn)?/span>平面,

所以平面平面.

(2)解:因?yàn)槠矫?/span>平面,平面平面,平面.

所以平面.

又因?yàn)?/span>平面,

所以.

為坐標(biāo)原點(diǎn),分別以,的方向?yàn)?/span>軸、軸、軸的正方向建立如圖所示的空間直角坐標(biāo)系

在題圖1中,設(shè),則,,.

,.

所以,.

設(shè)為平面的法向量,

,即

,則.所以.

設(shè)平面所成的角為

.

所以直線(xiàn)與平面所成角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】不等式對(duì)任意實(shí)數(shù)都成立,則實(shí)數(shù)的取值范圍_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某地區(qū)中小學(xué)生人數(shù)和近視情況如圖1和圖2所示.為了解該地區(qū)中小學(xué)生的近視形成原因,用分層抽樣的方法抽取2%的學(xué)生作為樣本進(jìn)行調(diào)查.

(1)求樣本容量和抽取的高中生近視人數(shù)分別是多少?

(2)在抽取的名高中生中,平均每天學(xué)習(xí)時(shí)間超過(guò)9小時(shí)的人數(shù)為,其中有12名學(xué)生近視,請(qǐng)完成高中生平均每天學(xué)習(xí)時(shí)間與近視的列聯(lián)表:

平均學(xué)習(xí)時(shí)間不超過(guò)9小時(shí)

平均學(xué)習(xí)時(shí)間超過(guò)9小時(shí)

總計(jì)

不近視

近視

總計(jì)

(3)根據(jù)(2)中的列聯(lián)表,判斷是否有的把握認(rèn)為高中生平均每天學(xué)習(xí)時(shí)間與近視有關(guān)?

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知直線(xiàn)2xy﹣1=0與直線(xiàn)x﹣2y+1=0交于點(diǎn)P

求過(guò)點(diǎn)P且平行于直線(xiàn)3x+4y﹣15=0的直線(xiàn)的方程;(結(jié)果寫(xiě)成直線(xiàn)方程的一般式)

求過(guò)點(diǎn)P并且在兩坐標(biāo)軸上截距相等的直線(xiàn)方程(結(jié)果寫(xiě)成直線(xiàn)方程的一般式)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】漢代數(shù)學(xué)家趙爽在注解《周髀算經(jīng)》時(shí)給出的“趙爽弦圖”(如下圖),四個(gè)全等的直角三角形(朱實(shí)),可以圍成一個(gè)大的正方形,中空部分為一個(gè)小正方形(黃實(shí)).若直角三角形中一條較長(zhǎng)的直角邊為8,直角三角形的面積為24,若在上面扔一顆玻璃小球,則小球落在黃實(shí)區(qū)域的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形中,,,,分別在上,,現(xiàn)將四邊形沿折起,使平面平面.

(Ⅰ)若,在折疊后的線(xiàn)段上是否存在一點(diǎn),且,使得平面?若存在,求出的值;若不存在,說(shuō)明理由;

(Ⅱ)當(dāng)三棱錐的體積最大時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018101日起,中華人民共和國(guó)個(gè)人所得稅新規(guī)定,公民月工資、薪金所得不超過(guò)5000元的部分不必納稅,超過(guò)5000元的部分為全月應(yīng)納稅所得額,此項(xiàng)稅款按下表分段累計(jì)計(jì)算:

全月應(yīng)納稅所得額

稅率

不超過(guò)1500元的部分

3

超過(guò)1500元不超過(guò)4500元的部分

10

超過(guò)4500元不超過(guò)9000元的部分

20

超過(guò)9000元不超過(guò)35000

25

如果小李10月份全月的工資、薪金為7000元,那么他應(yīng)該納稅多少元?

如果小張10月份交納稅金425元,那么他10月份的工資、薪金是多少元?

寫(xiě)出工資、薪金收入與應(yīng)繳納稅金的函數(shù)關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在幾何體中,四邊形是邊長(zhǎng)為的正方形,且平面,,且與平面所成角的正切值為.

(1)求證:平面平面;

(2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面是邊長(zhǎng)為4的正方形,側(cè)面為正三角形且二面角

(Ⅰ)設(shè)側(cè)面的交線(xiàn)為,求證:

(Ⅱ)設(shè)底邊與側(cè)面所成角的為,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案