【題目】己知直線2x﹣y﹣1=0與直線x﹣2y+1=0交于點P.
(Ⅰ)求過點P且平行于直線3x+4y﹣15=0的直線的方程;(結果寫成直線方程的一般式)
(Ⅱ)求過點P并且在兩坐標軸上截距相等的直線方程(結果寫成直線方程的一般式)
【答案】(Ⅰ)3x+4y﹣7=0;(Ⅱ)x+y﹣2=0或x﹣y=0.
【解析】
試題分析:
(1)聯(lián)立方程組,求得點,根據(jù)題意設直線的方程為,代入點,求得的值,即可得到直線的方程;
(2)①當直線過原點時,可得方程為;
②當直線不過原點時,設的方程為,代入點,求得,即可得到直線的方程.
試題解析:
聯(lián)立,解得,∴P(1,1).
(Ⅰ)設平行于直線3x+4y﹣15=0的直線l1的方程為3x+4y+m=0,把P(1,1)代入可得:3+4+m=0,解得m=-7.
∴過點P且平行于直線3x+4y﹣15=0的直線l1的方程為3x+4y﹣7=0.
(Ⅱ)當直線l2經過原點時,可得方程為:y=x.
當直線l2不過原點時,可設方程為:y+x=a,把P(1,1)代入可得1+1=a,可得a=2.
∴直線l2的方程為x+y﹣2=0.
綜上可得:直線l2的方程為x+y﹣2=0或x﹣y=0.
科目:高中數(shù)學 來源: 題型:
【題目】對于在區(qū)間上有意義的函數(shù),滿足對任意的,,有恒成立,厄稱在上是“友好”的,否則就稱在上是“不友好”的,現(xiàn)有函數(shù).
(1)若函數(shù)在區(qū)間()上是“友好”的,求實數(shù)的取值范圍;
(2)若關于的方程的解集中有且只有一個元素,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩家商場對同一種商品開展促銷活動,對購買該商品的顧客兩家商場的獎勵方案如下:
甲商場:顧客轉動如圖所示圓盤,當指針指向陰影部分(圖中四個陰影部分均為扇形,且每個扇形圓心角均為15°,邊界忽略不計) 即為中獎.
乙商場:從裝有3個白球3個紅球的盒子中一次性摸出2個球(球除顏色外不加區(qū)分),如果摸到的是2個紅球,即為中獎.
問:購買該商品的顧客在哪家商場中獎的可能性大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在每年的春節(jié)后,某市政府都會發(fā)動公務員參與到植樹綠化活動中去.林業(yè)管理部門在植樹前,為了保證樹苗的質量,都會在植樹前對樹苗進行檢測.現(xiàn)從甲、乙兩種樹苗中各抽測了10株樹苗,量出它們的高度如下(單位:厘米):
甲:37,21,31,20,29,19,32,23,25,33;
乙:10,30,47,27,46,14,26,10,44,46.
(1)畫出兩組數(shù)據(jù)的莖葉圖,并根據(jù)莖葉圖對甲、乙兩種樹苗的高度作比較,寫出兩個統(tǒng)計結論;
(2)設抽測的10株甲種樹苗高度平均值為,將這10株樹苗的高度依次輸入,按程序框(如圖)進行運算,問輸出的S大小為多少?并說明S的統(tǒng)計學意義.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】動圓M與定圓C:x2+y2+4x=0相外切,且與直線l:x-2=0相切,則動圓M的圓心的軌跡方程為( )
A. y2-12x+12=0 B. y2+12x-12=0
C. y2+8x=0 D. y2-8x=0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=f(x)是定義域為R的偶函數(shù). 當x≥0時,f(x)= ,若關于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且僅有6個不同實數(shù)根,則實數(shù)a的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com