【題目】已知函數(shù),且的解集為,數(shù)列的前項和為,對任意,都有

1)求數(shù)列的通項公式.

2)已知數(shù)列的前項和為,滿足,求數(shù)列的前項和.

3)已知數(shù)列,滿足,若對任意恒成立,求實數(shù)的取值范圍.

【答案】(1);(2;(3)

【解析】

1)根據根與系數(shù)的關系求出,和,再利用即可求出數(shù)列的通項公式;

2)根據,,可證明為等比數(shù)列,求得,,再根據錯位相減法即可求出結果;

3)由題意可知,可得,易知當時,;當時,,當時, ,進而求出有的最大值為,再根據不等式恒成立可列出不等式,解不等式,即可求出結果.

1的解集為,∴是方程的兩根

由韋達定理知,解得,∴,得

時,有

時,有

也符合 ,

2)當時,有,即,得

時,有,可得,即,

為等比數(shù)列,首項為,公比為2

,∴.

①,

得,

-②得

3)由題意可知,

∴當時,,即

時,,即,

時,,即,故有的最大值為

由于對任意恒成立

則應有,

綜上:的取值范圍是:.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】規(guī)定:在桌面上,用母球擊打目標球,使目標球運動,球的位置是指球心的位置,我們說球 A 是指該球的球心點 A.兩球碰撞后,目標球在兩球的球心所確定的直線上運動,目標球的運動方向是指目標球被母球擊打時,母球球心所指向目標球球心的方向.所有的球都簡化為平面上半徑為 1 的圓,且母球與目標球有公共點時,目標球就開始運動,在桌面上建立平面直角坐標系,解決下列問題:

(1) 如圖,設母球 A 的位置為 (0, 0),目標球 B 的位置為 (4, 0),要使目標球 B C(8, -4) 處運動,求母球 A 球心運動的直線方程;

(2)如圖,若母球 A 的位置為 (0, -2),目標球 B 的位置為 (4, 0),能否讓母球 A 擊打目標 B 球后,使目標 B 球向 (8,-4) 處運動?

(3) A 的位置為 (0,a) 時,使得母球 A 擊打目標球 B 時,目標球 B(4, 0) 運動方向可以碰到目標球 C(7,-5),求 a 的最小值(只需要寫出結果即可)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù).

(1)求的單調區(qū)間;

(2)若,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某電視娛樂節(jié)目的游戲活動中,每人需完成A、B、C三個項目.已知選手甲完成A、B、C三個項目的概率分別為、、.每個項目之間相互獨立.

(1)選手甲對A、B、C三個項目各做一次,求甲至少完成一個項目的概率.

(2)該活動要求項目A、B 各做兩次,項目C做三次.若兩次項目A均完成,則進行項目B,并獲得積分a;兩次項目B均完成,則進行項目C,并獲積分3a;三次項目C只要兩次成功,則該選手闖關成功并獲積分6a(積分不累計),且每個項目之間互相獨立.用X表示選手甲所獲積分的數(shù)值,寫出X的分布列并求數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系中,橢圓的方程為,以為極點, 軸非負半軸為極軸,取相同的長度單位建立極坐標系,直線的極坐標方程為.

(1)求直線的直角坐標方程和橢圓的參數(shù)方程;

(2)設為橢圓上任意一點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)在一個周期內的簡圖如圖所示,則函數(shù)的解析式為___________,方程的實根個數(shù)為__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將2、3、4、6、8、9、12、15共八個數(shù)排成一行,使得任意相鄰兩個數(shù)的最大公約數(shù)均大于1.則所有可能的排法共有()種

A. 720 B. 1014 C. 576 D. 1296

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某體育公司對最近6個月內的市場占有率進行了統(tǒng)計,結果如表:

(1)可用線性回歸模型擬合之間的關系嗎?如果能,請求出關于的線性回歸方程,如果不能,請說明理由;

(2)公司決定再采購兩款車擴大市場,,兩款車各100輛的資料如表:

平均每輛車每年可為公司帶來收入500元,不考慮采購成本之外的其他成本,假設每輛車的使用壽命都是整數(shù)年,用每輛車使用壽命的頻率作為概率,以每輛車產生利潤的期望值作為決策依據,應選擇采購哪款車型?

參考數(shù)據:,,

參考公式:相關系數(shù);

回歸直線方程,其中,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),在一個周期內的圖象如下圖所示.

1)求函數(shù)的解析式;

2)設,且方程有兩個不同的實數(shù)根,求實數(shù)m的取值范圍和這兩個根的和.

查看答案和解析>>

同步練習冊答案