精英家教網 > 高中數學 > 題目詳情

【題目】已知直線C1 ( t 為參數),曲線C2 (r>0,θ為參數).

(1)當r=1時,求C 1 與C2的交點坐標;

(2)點P 為曲線 C2上一動點,當r=時,求點P 到直線C1距離最大時點P 的坐標.

【答案】(1)(1,0),(0,﹣1);(2)P(﹣1,1).

【解析】試題分析:(1)將直線、曲線參數方程化為普通方程,聯(lián)立解方程組即可求的交點坐標;(2)利用圓的參數方程結合點到直線的距離公式、三角函數公式,即可求點到直線距離最大時點的坐標.

試題解析:(1)直線C1( t 為參數)的普通方程為y=x﹣1,當r=1時,曲線C2(r>0,θ為參數)的普通方程為x2+y2=1.

聯(lián)立方程,可得C 1 與C2的交點坐標為(1,0),(0,﹣1);

(2)設P(),則點P 到直線C1距離d==

當cos(θ+)=﹣1,即θ=+2kπ(k∈Z)時,dmax=,此時P(﹣1,1).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某公司生產甲、乙兩種桶裝產品,已知生產甲產品1桶需耗原料2千克, 原料3千克;生產乙產品1桶需耗原料2千克, 原料1千克,每桶甲產品的利潤是300元,每桶乙產品的利潤是400元,公司在要求每天消耗原料都不超過12千克的條件下,生產產品、產品的利潤之和的最大值為( )

A. 1800元 B. 2100元 C. 2400元 D. 2700元

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線l過點P(0,﹣4),且傾斜角為 ,圓C的極坐標方程為ρ=4cosθ.
(1)求直線l的參數方程和圓C的直角坐標方程;
(2)若直線l和圓C相交于A、B兩點,求|PA||PB|及弦長|AB|的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數, 是自然對數的底數).

(1)當時,求曲線在點處的切線方程;

(2)當時,不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)是二次函數,若f(0)=0且f(x+1)﹣f(x)=x+1,求函數f(x)的解析式,并求出它在區(qū)間[﹣1,3]上的最大、最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)=x2+bx+c(b,c∈R,b<0).
(1)若f(x)的定義域為[0,1]時,值域也是[0,1],求b,c的值;
(2)若b=﹣2時,若函數g(x)= 對任意x∈[3,5],g(x)>c恒成立,試求實數c的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】微信是騰訊公司推出的一種手機通訊軟件,它支持發(fā)送語音短信、視頻、圖片和文字,一經推出便風靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內銷售商品的人(被稱為微商).為了調查每天微信用戶使用微信的時間,某經銷化妝品的微商在一廣場隨機采訪男性、女性用戶各50 名,其中每天玩微信超過6 小時的用戶列為“微信控”,否則稱其為“非微信控”,調查結果如下:

微信控

非微信控

合計

男性

26

24

50

女性

30

20

50

合計

56

44

100

(1)根據以上數據,能否有60%的把握認為“微信控”與”性別“有關?

(2)現(xiàn)從調查的女性用戶中按分層抽樣的方法選出5 人并從選出的5 人中再隨機抽取3 人贈送200 元的護膚品套裝,記這3 人中“微信控”的人數為X,試求X 的分布列與數學期望.

參考公式:,其中n=a+b+c+d.

P(K2≥k0

0.50

0.40

0.25

0.05

0.025

0.010

k0

0.455

0.708

1.323

3.841

5.024

6.635

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】近年來我國電子商務行業(yè)迎來蓬勃發(fā)展的新機遇相關管理部門推出了針對電商的商品和服務的評價體系.現(xiàn)從評價系統(tǒng)中選出次成功交易,并對其評價進行統(tǒng)計愛,商品和服務評價的列聯(lián)表如下表:

對服務好評

對服務不滿意

合計

對商品好評

對商品不滿意

合計

(1)是否可以在犯錯誤概率不超過的前提下,認為商品好評與服務好評有關?

(2)若將頻率視為概率,某人在該購物平臺上進行的次購物中,設對商品和服務全好評的次數為隨機變量,求的數學期望.

參考數據:

,其中

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中, , ,且 , , .

)求證:平面平面

)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案