【題目】微信是騰訊公司推出的一種手機通訊軟件,它支持發(fā)送語音短信、視頻、圖片和文字,一經(jīng)推出便風靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為了調(diào)查每天微信用戶使用微信的時間,某經(jīng)銷化妝品的微商在一廣場隨機采訪男性、女性用戶各50 名,其中每天玩微信超過6 小時的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:

微信控

非微信控

合計

男性

26

24

50

女性

30

20

50

合計

56

44

100

(1)根據(jù)以上數(shù)據(jù),能否有60%的把握認為“微信控”與”性別“有關?

(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5 人并從選出的5 人中再隨機抽取3 人贈送200 元的護膚品套裝,記這3 人中“微信控”的人數(shù)為X,試求X 的分布列與數(shù)學期望.

參考公式:,其中n=a+b+c+d.

P(K2≥k0

0.50

0.40

0.25

0.05

0.025

0.010

k0

0.455

0.708

1.323

3.841

5.024

6.635

【答案】(1)沒有60%的把握(2)見解析

【解析】試題分析:(1)由列表根據(jù)公式計算,對照臨界值表即可得出結(jié)論;(2)依題意所抽取的位女性中“微信控”有人,得所有可能取值為 ,計算對應的概率,寫出的分布列,由期望公式計算數(shù)學期望值.

試題解析:(1)由列聯(lián)表可知,

==≈0.649,

∵0.649<0.708,

∴沒有60%的把握認為“微信控”與”性別“有關;

(2)依題意知,所抽取的5位女性中“微信控”有3人,

“非微信控”有2人,

∴X的所有可能取值為1,2,3;

且P(X=1)==,P(X=2)==,P(X=3)==,

∴X 的分布列為:

X

1

2

3

P(X)

X的數(shù)學期望為EX=1×+2×+3×=

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E的中心在原點,離心率為 ,右焦點到直線x+y+ =0的距離為2.
(1)求橢圓E的方程;
(2)橢圓下頂點為A,直線y=kx+m(k≠0)與橢圓相交于不同的兩點M、N,當|AM|=|AN|時,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩名運動員參加“選拔測試賽”,在相同條件下,兩人6次測試的成績(單位:分)記錄如下:

甲 86 77 92 72 78 84

乙 78 82 88 82 95 90

(1)用莖葉圖表示這兩組數(shù)據(jù),現(xiàn)要從中選派一名運動員參加比賽,你認為選派誰參賽更好?說明理由(不用計算);

(2)若將頻率視為概率,對運動員甲在今后三次測試成績進行預測,記這三次成績高于85分的次數(shù)為,求的分布列和數(shù)學期望及方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線C1 ( t 為參數(shù)),曲線C2 (r>0,θ為參數(shù)).

(1)當r=1時,求C 1 與C2的交點坐標;

(2)點P 為曲線 C2上一動點,當r=時,求點P 到直線C1距離最大時點P 的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設全集為R,函數(shù) 的定義域為M,則RM為(
A.(2,+∞)
B.(﹣∞,2)
C.(﹣∞,2]
D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD與BDEF均為菱形,∠DAB=∠DBF=60°,且FA=FC.

(Ⅰ)求證:AC⊥平面BDEF;

(Ⅱ)求證:FC∥平面EAD;

(Ⅲ)求二面角A﹣FC﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某險種的基本保費為(單位:元),繼續(xù)購買該險種的投保人稱為續(xù)保人,

續(xù)保人本年度的保費與其上年度出險次數(shù)的關聯(lián)如下:

上年度出險次數(shù)

0

1

2

3

4

保費

隨機調(diào)查了該險種的400名續(xù)保人在一年內(nèi)的出險情況,得到如下統(tǒng)計表:

出險次數(shù)

0

1

2

3

4

頻數(shù)

120

100

60

60

40

20

A為事件:“一續(xù)保人本年度的保費不高于基本保費”.的估計值;

(Ⅱ)B為事件:“一續(xù)保人本年度的保費高于基本保費但不高于基本保費的190%”.

的估計值;

(III)求續(xù)保人本年度的平均保費估計值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列各組函數(shù)中,表示同一個函數(shù)的是(
A.y= 與y=x+1
B.y=lgx與y= lgx2
C.y= ﹣1與y=x﹣1
D.y=x與y=logaax(a>0且a≠1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=2+log3x,x∈[1,9],求函數(shù)y=[f(x)]2+f(x2)的值域.

查看答案和解析>>

同步練習冊答案