【題目】已知橢圓E的中心在原點(diǎn),離心率為 ,右焦點(diǎn)到直線x+y+ =0的距離為2.
(1)求橢圓E的方程;
(2)橢圓下頂點(diǎn)為A,直線y=kx+m(k≠0)與橢圓相交于不同的兩點(diǎn)M、N,當(dāng)|AM|=|AN|時(shí),求m的取值范圍.
【答案】
(1)解:設(shè)橢圓的右焦點(diǎn)為(c,0),依題意有 =2
又c>0,得c=
又e= = = ,∴a=
∴b= =1
∴橢圓E的方程為 =1
(2)解:橢圓下頂點(diǎn)為A(0,﹣1),
設(shè)弦MN的中點(diǎn)為P(xp,yp),xM、xN分別為點(diǎn)M、N的橫坐標(biāo),
由直線與橢圓方程消去y,得(3k2+1)x2+6mkx+3(m2﹣1)=0,
由于直線與橢圓有兩個(gè)不同的交點(diǎn),所以
∴△>0,即m2<3k2+1 ①
xp=﹣ ,從而yp=kxp+m= ,kAP= =﹣
又|AM|=|AN|∴AM⊥AN,則﹣ =﹣ ,即2m=3k2+1 ②,
將②代入①得2m>m2,解得0<m<2,由②得k2= >0,解得m> ,
故所求的m取值范圍是( ,2)
【解析】(1)利用右焦點(diǎn)到直線x+y+ =0的距離為2,建立方程求出c,利用離心率為 ,求出a,可得b,即可求橢圓E的方程;(2)設(shè)弦MN的中點(diǎn)為P(xp , yp),xM、xN分別為點(diǎn)M、N的橫坐標(biāo),聯(lián)立直線方程與橢圓方程,利用直線與橢圓有兩個(gè)不同的交點(diǎn),得到△>0,可得m2<3k2+1,通過|AM|=|AN|,判斷AM⊥AN,得到2m=3k2+1,然后求得m的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)滿足f(0)=2和f(x+1)﹣f(x)=2x﹣1對(duì)任意實(shí)數(shù)x都成立.
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)t∈[﹣1,3]時(shí),求y=f(2t)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校對(duì)甲、乙兩個(gè)班級(jí)進(jìn)行了物理測(cè)驗(yàn),成績(jī)統(tǒng)計(jì)如下(每班50人):
(1)估計(jì)甲班的平均成績(jī);
(2)成績(jī)不低于80分記為“優(yōu)秀”.請(qǐng)完成下面的列聯(lián)表,并判斷是否有85%的把握認(rèn)為:“成績(jī)優(yōu)秀”與所在教學(xué)班級(jí)有關(guān)?
(3)從兩個(gè)班級(jí),成績(jī)?cè)?/span>的學(xué)生中任選2人,記事件為“選出的2人中恰有1人來自甲班”.求事件的概率.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)甲、乙兩種桶裝產(chǎn)品,已知生產(chǎn)甲產(chǎn)品1桶需耗原料2千克, 原料3千克;生產(chǎn)乙產(chǎn)品1桶需耗原料2千克, 原料1千克,每桶甲產(chǎn)品的利潤(rùn)是300元,每桶乙產(chǎn)品的利潤(rùn)是400元,公司在要求每天消耗原料都不超過12千克的條件下,生產(chǎn)產(chǎn)品、產(chǎn)品的利潤(rùn)之和的最大值為( )
A. 1800元 B. 2100元 C. 2400元 D. 2700元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知具有相關(guān)關(guān)系的兩個(gè)變量之間的幾組數(shù)據(jù)如下表所示:
(1)請(qǐng)根據(jù)上表數(shù)據(jù)在網(wǎng)格紙中繪制散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程,并估計(jì)當(dāng)時(shí), 的值;
(3)將表格中的數(shù)據(jù)看作五個(gè)點(diǎn)的坐標(biāo),則從這五個(gè)點(diǎn)中隨機(jī)抽取3個(gè)點(diǎn),記落在直線右下方的點(diǎn)的個(gè)數(shù)為,求的分布列以及期望.
參考公式: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=loga(1﹣x)+loga(x+3),(0<a<1).
(1)求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)的最小值為﹣2,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的離心率為,且橢圓過點(diǎn),記橢圓的左、右頂點(diǎn)分別為,點(diǎn)是橢圓上異于的點(diǎn),直線與直線分別交于點(diǎn).
(1)求橢圓的方程;
(2)過點(diǎn)作橢圓的切線,記,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l過點(diǎn)P(0,﹣4),且傾斜角為 ,圓C的極坐標(biāo)方程為ρ=4cosθ.
(1)求直線l的參數(shù)方程和圓C的直角坐標(biāo)方程;
(2)若直線l和圓C相交于A、B兩點(diǎn),求|PA||PB|及弦長(zhǎng)|AB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】微信是騰訊公司推出的一種手機(jī)通訊軟件,它支持發(fā)送語音短信、視頻、圖片和文字,一經(jīng)推出便風(fēng)靡全國(guó),甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為了調(diào)查每天微信用戶使用微信的時(shí)間,某經(jīng)銷化妝品的微商在一廣場(chǎng)隨機(jī)采訪男性、女性用戶各50 名,其中每天玩微信超過6 小時(shí)的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:
微信控 | 非微信控 | 合計(jì) | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合計(jì) | 56 | 44 | 100 |
(1)根據(jù)以上數(shù)據(jù),能否有60%的把握認(rèn)為“微信控”與”性別“有關(guān)?
(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5 人并從選出的5 人中再隨機(jī)抽取3 人贈(zèng)送200 元的護(hù)膚品套裝,記這3 人中“微信控”的人數(shù)為X,試求X 的分布列與數(shù)學(xué)期望.
參考公式:,其中n=a+b+c+d.
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.323 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com