【題目】如圖,在四棱錐中, , ,且 , , .

)求證:平面平面;

)求直線與平面所成角的正弦值.

【答案】I)證明見解析;(

【解析】試題分析:(1)證明面面垂直,一般利用面面垂直判定定理,即從線面垂直進(jìn)行論證,而線面垂直證明,往往需要多次利用線線垂直與線面垂直的轉(zhuǎn)化,而線線垂直,有時(shí)可利用平幾條件進(jìn)行尋找與論證,如本題取中點(diǎn)E,利用平幾知識(shí)得到四邊形是矩形,從而得到,而易得,因此,進(jìn)而有平面平面;(2)利用空間向量求線面角,首先建立空間直角坐標(biāo)系:以A 為原點(diǎn), , ,建立空間直角坐標(biāo)角系,設(shè)出各點(diǎn)坐標(biāo),利用方程組解出面的法向量,利用向量數(shù)量積求夾角,最后根據(jù)線面角與向量夾角互余得結(jié)論

試題解析:解:證明:(1中點(diǎn), , ,四邊形是矩形, ,平面,,在平面, 平面平面,平面平面,平面平面.

2)以A 為原點(diǎn), , ,建立空間直角坐標(biāo)角系,

,

設(shè)平面的法向量,,,,

設(shè)直線與平面所成的角為, ,

直線與平面所成的角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線C1 ( t 為參數(shù)),曲線C2 (r>0,θ為參數(shù)).

(1)當(dāng)r=1時(shí),求C 1 與C2的交點(diǎn)坐標(biāo);

(2)點(diǎn)P 為曲線 C2上一動(dòng)點(diǎn),當(dāng)r=時(shí),求點(diǎn)P 到直線C1距離最大時(shí)點(diǎn)P 的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各組函數(shù)中,表示同一個(gè)函數(shù)的是(
A.y= 與y=x+1
B.y=lgx與y= lgx2
C.y= ﹣1與y=x﹣1
D.y=x與y=logaax(a>0且a≠1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (t為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=﹣
(1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(2)若C1上的點(diǎn)P對(duì)應(yīng)的參數(shù)為t= ,Q為C2上的動(dòng)點(diǎn),求PQ中點(diǎn)M到直線C3 (α為參數(shù))距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= 的定義域是一切實(shí)數(shù),則m的取值范圍是(
A.0<m≤4
B.0≤m≤1
C.m≥4
D.0≤m≤4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=|ax1﹣1|在區(qū)間(a,3a﹣1)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=2+log3x,x∈[1,9],求函數(shù)y=[f(x)]2+f(x2)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)函數(shù)中,在(0,+∞)上為增函數(shù)的是(
A.f(x)=3﹣x
B.f(x)=x2﹣3x
C.f(x)=﹣
D.f(x)=﹣|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在閉區(qū)間[a,b]D,使得函數(shù)f(x)滿足:
①f(x)在[a,b]上是單調(diào)函數(shù);
②f(x)在[a,b]上的值域是[2a,2b],則稱區(qū)間[a,b]是函數(shù)f(x)的“和諧區(qū)間”.
下列結(jié)論錯(cuò)誤的是(
A.函數(shù)f(x)=x2(x≥0)存在“和諧區(qū)間”
B.函數(shù)f(x)=2x(x∈R)存在“和諧區(qū)間”
C.函數(shù)f(x)= (x>0)不存在“和諧區(qū)間”
D.函數(shù)f(x)=log2x(x>0)存在“和諧區(qū)間”

查看答案和解析>>

同步練習(xí)冊(cè)答案