分別求適合下列條件圓錐曲線的標準方程:
(1)焦點為、且過點橢圓;
(2)與雙曲線有相同的漸近線,且過點的雙曲線.

(1)(2)

解析試題分析:解:(1)設橢圓的標準方程為).
因為,所以,
故橢圓的標準方程為.                6分
(2)設雙曲線的標準方程為).
因為雙曲線過點,所以,解得
故雙曲線的方程為,即.         12
考點:橢圓方程,雙曲線方程
點評:主要是根據(jù)橢圓和雙曲線的性質(zhì)來求解橢圓和雙曲線的方程的運用,屬于基礎題。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓E:的離心率為,右焦點為F,且橢圓E上的點到點F距離的最小值為2.
(1)求橢圓E的方程;
(2)設橢圓E的左、右頂點分別為A,B,過點A的直線l與橢圓E及直線x=8分別相交于點M,N.
(。┊斶^A,F(xiàn),N三點的圓半徑最小時,求這個圓的方程;
(ⅱ)若,求△ABM的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓E:)離心率為,上頂點M,右頂點N,直線MN與圓相切,斜率為k的直線l經(jīng)過橢圓E在正半軸的焦點F,且交E于A、B不同兩點.
(1)求E的方程;
(2)若點G(m,0)且| GA|=| GB|,,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知圓C與y軸相切于點T(0,2),與x軸正半軸相交于兩點M,N  (點M在點N的右側(cè)),且。橢圓D:的焦距等于,且過點

( I ) 求圓C和橢圓D的方程;
(Ⅱ) 若過點M的動直線與橢圓D交于A、B兩點,若點N在以弦AB為直徑的圓的外部,求直線斜率的范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線,直線交拋物線于兩點,且

(1)求拋物線的方程;
(2)若點是拋物線上的動點,過點的拋物線的切線與直線交于點,問在軸上是否存在定點,使得?若存在,求出該定點,并求出的面積的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知橢圓的左焦點為F,過點F的直線交橢圓于A、B兩點,線段AB的中點為G,AB的中垂線與x軸和y軸分別交于D、E兩點.

(Ⅰ)若點G的橫坐標為,求直線AB的斜率;
(Ⅱ)記△GFD的面積為S1,△OED(O為原點)的面積為S2
試問:是否存在直線AB,使得S1=S2?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題


已知橢圓C:其左、右焦點分別為F1、F2,點P是坐標平面內(nèi)一點,且|OP|=(O為坐標原點)。
(1)求橢圓C的方程;
(2)過點l交橢圓于A、B兩點,在y軸上是否存在定點M,使以AB為直徑的圓恒過這個點:若存在,求出M的坐標;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在直角坐標系中,曲線的參數(shù)方程為為參數(shù))。
若以直角坐標系的原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為(其中為常數(shù))
(1)當時,曲線與曲線有兩個交點.求的值;
(2)若曲線與曲線只有一個公共點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

過拋物線的焦點作傾斜角為的直線交拋物線于、兩點,過點作拋物線的切線軸于點,過點作切線的垂線交軸于點。

(1) 若,求此拋物線與線段以及線段所圍成的封閉圖形的面積。
(2) 求證:;

查看答案和解析>>

同步練習冊答案