在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù))。
若以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(其中為常數(shù))
(1)當(dāng)時,曲線與曲線有兩個交點(diǎn).求的值;
(2)若曲線與曲線只有一個公共點(diǎn),求的取值范圍.

(1)  (2)  

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,橢圓的左焦點(diǎn)為,過點(diǎn)的直線交橢圓于,兩點(diǎn).當(dāng)直線經(jīng)過橢圓的一個頂點(diǎn)時,其傾斜角恰為

(Ⅰ)求該橢圓的離心率;
(Ⅱ)設(shè)線段的中點(diǎn)為,的中垂線與軸和軸分別交于兩點(diǎn),
記△的面積為,△為原點(diǎn))的面積為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

分別求適合下列條件圓錐曲線的標(biāo)準(zhǔn)方程:
(1)焦點(diǎn)為、且過點(diǎn)橢圓;
(2)與雙曲線有相同的漸近線,且過點(diǎn)的雙曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,直線的參數(shù)方程為(t為參數(shù)),它與曲線交于A、B兩點(diǎn)。
(1)求的長;
(2)在以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)P的極坐標(biāo)為,求點(diǎn)P到線段AB中點(diǎn)M的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的左頂點(diǎn),過右焦點(diǎn)且垂直于長軸的弦長為
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點(diǎn)的直線與橢圓交于點(diǎn),與軸交于點(diǎn),過原點(diǎn)與平行的直線與橢圓交于點(diǎn),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的短軸長等于焦距,橢圓C上的點(diǎn)到右焦點(diǎn)的最短距離為.
(1)求橢圓C的方程;
(2)過點(diǎn)且斜率為(>0)的直線C交于兩點(diǎn),是點(diǎn)關(guān)于軸的對稱點(diǎn),證明:三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

平面內(nèi)動點(diǎn)到定點(diǎn)的距離比它到軸的距離大。
(1)求動點(diǎn)的軌跡的方程;
(2)過的直線相交于兩點(diǎn),若,求弦的長。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線lykx+2(k為常數(shù))過橢圓=1(ab>0)的上頂點(diǎn)B和左焦點(diǎn)F,直線l被圓x2y2=4截得的弦長為d.
(1)若d=2,求k的值;
(2)若d,求橢圓離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題


已知橢圓:的一個焦點(diǎn)為且過點(diǎn).

(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)橢圓E的上下頂點(diǎn)分別為A1,A2P是橢圓上異于A1,A2的任一點(diǎn),直線PA1,PA2分別交軸于點(diǎn)N,M,若直線OT與過點(diǎn)MN的圓G相切,切點(diǎn)為T
證明:線段OT的長為定值,并求出該定值.

查看答案和解析>>

同步練習(xí)冊答案