【題目】已知函數(shù),直線.

(Ⅰ)設(shè)圖象上一點(diǎn),為原點(diǎn),直線的斜率,若 上存在極值,求的取值范圍;

(Ⅱ)是否存在實(shí)數(shù),使得直線是曲線的切線?若存在,求出的值;若不存在,說明理由;

(Ⅲ)試確定曲線與直線的交點(diǎn)個(gè)數(shù),并說明理由.

【答案】,(Ⅲ)見解析

【解析】

(Ⅰ)先根據(jù)斜率公式列再求導(dǎo)數(shù)及其零點(diǎn),最后根據(jù)條件列不等式,解得結(jié)果,(Ⅱ)設(shè)切點(diǎn),根據(jù)導(dǎo)數(shù)幾何意義得斜率,再根據(jù)點(diǎn)斜式得切線方程,最后根據(jù)切線過(0,-1)點(diǎn)列方程,解得切點(diǎn)坐標(biāo),即得的值;(Ⅲ)先變量分離,轉(zhuǎn)化為研究函數(shù)圖象,利用導(dǎo)數(shù)研究其單調(diào)性,再結(jié)合函數(shù)圖象確定交點(diǎn)個(gè)數(shù).

(Ⅰ)∵,∴,解得.

由題意得: ,解得.

(Ⅱ)假設(shè)存在實(shí)數(shù),使得直線是曲線的切線,令切點(diǎn)

∴切線的斜率.

∴切線的方程為,

又∵切線過(0,-1)點(diǎn),

.

解得,∴,

.

(Ⅲ)由題意,令, 得 .

, ∴,由,解得.

在(0,1)上單調(diào)遞增,在上單調(diào)遞減,

,又時(shí),;時(shí),,

時(shí),只有一個(gè)交點(diǎn);時(shí),有兩個(gè)交點(diǎn);

時(shí),沒有交點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某養(yǎng)殖產(chǎn)品在某段時(shí)間內(nèi)的生長(zhǎng)情況,在該批產(chǎn)品中隨機(jī)抽取了120件樣本,測(cè)量其增長(zhǎng)長(zhǎng)度(單位:),經(jīng)統(tǒng)計(jì)其增長(zhǎng)長(zhǎng)度均在區(qū)間內(nèi),將其按,,,,分成6組,制成頻率分布直方圖,如圖所示其中增長(zhǎng)長(zhǎng)度為及以上的產(chǎn)品為優(yōu)質(zhì)產(chǎn)品.

(Ⅰ)求圖中的值;

(Ⅱ)已知這120件產(chǎn)品來自于,兩個(gè)試驗(yàn)區(qū),部分?jǐn)?shù)據(jù)如下列聯(lián)表:

試驗(yàn)區(qū)

試驗(yàn)區(qū)

合計(jì)

優(yōu)質(zhì)產(chǎn)品

20

非優(yōu)質(zhì)產(chǎn)品

60

合計(jì)

將聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為優(yōu)質(zhì)產(chǎn)品與兩個(gè)試驗(yàn)區(qū)有關(guān)系,并說明理由;

下面的臨界值表僅供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

(Ⅲ)以樣本的頻率代表產(chǎn)品的概率,從這批產(chǎn)品中隨機(jī)抽取4件進(jìn)行分析研究,計(jì)算抽取的這4件產(chǎn)品中含優(yōu)質(zhì)產(chǎn)品的件數(shù)的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)如圖在三棱錐中, 分別為棱的中點(diǎn),已知,

求證(1)直線平面;

(2)平面 平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的比值為.

1)求橢圓的方程;

2)設(shè)經(jīng)過點(diǎn)的直線與橢圓相交于不同的兩點(diǎn).若點(diǎn)在以線段為直徑的圓上,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C 的右焦點(diǎn)為F(2,0),過點(diǎn)F的直線交橢圓于M、N兩點(diǎn)且MN的中點(diǎn)坐標(biāo)為

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)直線l不經(jīng)過點(diǎn)P(0,b)且與C相交于A,B兩點(diǎn),若直線PA與直線PB的斜率的和為1,試判斷直線 l是否經(jīng)過定點(diǎn),若經(jīng)過定點(diǎn),請(qǐng)求出該定點(diǎn);若不經(jīng)過定點(diǎn),請(qǐng)給出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年全國(guó)“兩會(huì)”,即中華人民共和國(guó)第十三屆全國(guó)人大二次會(huì)議和中國(guó)人民政治協(xié)商會(huì)議第十三屆全國(guó)委員會(huì)第二次會(huì)議,分別于2019年3月5日和3月3日在北京召開.為了了解哪些人更關(guān)注“兩會(huì)”,某機(jī)構(gòu)隨機(jī)抽取了年齡在15~75歲之間的200人進(jìn)行調(diào)查,并按年齡繪制的頻率分布直方圖如下圖所示,把年齡落在區(qū)間[15,35)和[35,75]內(nèi)的人分別稱為“青少年人”和“中老年人”.經(jīng)統(tǒng)計(jì)“青少年人”和“中老年人”的人數(shù)之比為19:21.其中“青少年人”中有40人關(guān)注“兩會(huì)”,“中老年人”中關(guān)注“兩會(huì)”和不關(guān)注“兩會(huì)”的人數(shù)之比是2:1.

(Ⅰ)求圖中的值;

(Ⅱ)現(xiàn)采用分層抽樣在[25,35)和[45,55)中隨機(jī)抽取8名代表,從8人中任選2人,求2人中至少有1個(gè)是“中老年人”的概率是多少?

(Ⅲ)根據(jù)已知條件,完成下面的2×2列聯(lián)表,并根據(jù)此統(tǒng)計(jì)結(jié)果判斷:能否有99.9%的把握認(rèn)為“中老年人”比“青少年人”更加關(guān)注“兩會(huì)”?

關(guān)注

不關(guān)注

合計(jì)

青少年人

中老年人

合計(jì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“水是生命之源”,但是據(jù)科學(xué)界統(tǒng)計(jì)可用淡水資源僅占地球儲(chǔ)水總量的,全世界近人口受到水荒的威脅.某市為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)(噸):一位居民的月用水量不超過的部分按平價(jià)收費(fèi),超出的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.

(1)求直方圖中的值;

(2)設(shè)該市有60萬(wàn)居民,估計(jì)全市居民中月均用水量不低于2.5噸的人數(shù),并說明理由;

(3)若該市政府希望使的居民每月的用水不按議價(jià)收費(fèi),估計(jì)的值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,設(shè),且,記;

(1)設(shè),其中,試求的單調(diào)區(qū)間;

(2)試判斷弦的斜率的大小關(guān)系,并證明;

(3)證明:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 是奇函數(shù).

1)求實(shí)數(shù)的值;

2)判斷函數(shù)上的單調(diào)性,并給出證明;

3)當(dāng)時(shí),函數(shù)的值域是,求實(shí)數(shù)的值

查看答案和解析>>

同步練習(xí)冊(cè)答案