【題目】已知橢圓C關(guān)于x軸、y軸都對稱,并且經(jīng)過兩點(diǎn),

1)求橢圓C的離心率和焦點(diǎn)坐標(biāo);

2D是橢圓C上到點(diǎn)A最遠(yuǎn)的點(diǎn),橢圓C在點(diǎn)B處的切線ly軸交于點(diǎn)E,求△BDE外接圓的圓心坐標(biāo).

【答案】1)離心率,焦點(diǎn)坐標(biāo)為;(2

【解析】

1)根據(jù)已知設(shè)所求橢圓方程為,點(diǎn)坐標(biāo)代入橢圓方程,求解得到橢圓的標(biāo)準(zhǔn)方程,即可求出離心率和焦點(diǎn)坐標(biāo);

2)設(shè),利用點(diǎn)在橢圓上,將表示為關(guān)于的二次函數(shù),求出最大時點(diǎn)坐標(biāo);顯然橢圓C在點(diǎn)B處的切線l的斜率存在,設(shè)出其方程,與橢圓方程聯(lián)立,利用,求出切線的斜率,進(jìn)而求出點(diǎn)坐標(biāo),利用待定系數(shù)法求出△BDE外接圓的一般式方程,即可得出結(jié)論.

1)已知橢圓C關(guān)于軸、軸都對稱,

設(shè)其方程為

在橢圓上,得,

聯(lián)立解得,,得橢圓C的方程是.

依次表示橢圓的長半軸、短半軸、半焦距,

,則,.

所以,橢圓C的離心率,焦點(diǎn)坐標(biāo)為

2)設(shè),則,即,

.

函數(shù)在區(qū)間上遞減,

取最大時,,此時,

所以,橢圓C上到點(diǎn)最遠(yuǎn)的點(diǎn)是

設(shè)橢圓C在點(diǎn)處的切線的方程為

,與聯(lián)立消去后整理得

判別式,

由相切條件得,,

所以橢圓C在點(diǎn)處的切線的方程是,

,得切線軸的交點(diǎn)坐標(biāo).

設(shè)外接圓的方程為,

由三點(diǎn)都在圓上,

解得

,,

所以外接圓的圓心坐標(biāo)是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在疫情這一特殊時期,教育行政部門部署了停課不停學(xué)的行動,全力幫助學(xué)生在線學(xué)習(xí).復(fù)課后進(jìn)行了摸底考試,某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生這次摸底考試的數(shù)學(xué)成績與在線學(xué)習(xí)數(shù)學(xué)時長之間的相關(guān)關(guān)系,對在校高三學(xué)生隨機(jī)抽取45名進(jìn)行調(diào)查.知道其中有25人每天在線學(xué)習(xí)數(shù)學(xué)的時長是不超過1小時的,得到了如下的等高條形圖:

)是否有的把握認(rèn)為高三學(xué)生的這次摸底考試數(shù)學(xué)成績與其在線學(xué)習(xí)時長有關(guān)

)將頻率視為概率,從全校高三學(xué)生這次數(shù)學(xué)成績超過120分的學(xué)生中隨機(jī)抽取10人,求抽取的10人中每天在線學(xué)習(xí)時長超過1小時的人數(shù)的數(shù)學(xué)期望和方差.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若關(guān)于的方程恰有三個不相等的實(shí)數(shù)解,則的取值范圍是  

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】人們通常以分貝(符號是)為單位來表示聲音強(qiáng)度的等級,30~40分貝是較理想的安靜環(huán)境,超過50分貝就會影響睡眠和休息,70分貝以上會干擾談話,長期生活在90分貝以上的嗓聲環(huán)境,會嚴(yán)重影響聽力和引起神經(jīng)衰弱、頭疼、血壓升高等疾病,如果突然暴露在高達(dá)150分貝的噪聲環(huán)境中,聽覺器官會發(fā)生急劇外傷,引起鼓膜破裂出血,雙耳完全失去聽力,為了保護(hù)聽力,應(yīng)控制噪聲不超過90分貝,一般地,如果強(qiáng)度為的聲音對應(yīng)的等級為,則有,則的聲音與的聲音強(qiáng)度之比為(

A.10B.100C.1000D.10000

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),對[0, π],都有,滿足f(x2)=0的實(shí)數(shù)x有且只有3個,給出下述四個結(jié)論:①滿足題目條件的實(shí)數(shù)x0有且只有1個;②滿足題目條件的實(shí)數(shù)x1有且只有1個;③f(x)上單調(diào)遞增;④的取值范圍是;其中所有正確結(jié)論的編號是(

A.①③B.②④C.①②④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)(其中,mn為常數(shù))

1)當(dāng)時,對恒成立,求實(shí)數(shù)n的取值范圍;

2)若曲線處的切線方程為,函數(shù)的零點(diǎn)為,求所有滿足的整數(shù)k的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)舉行了科學(xué)防疫知識競賽.經(jīng)過選拔,甲、乙、丙三位選手進(jìn)入了最后角逐.他們還將進(jìn)行四場知識競賽.規(guī)定:每場知識競賽前三名的得分依次為a,bc,且a,b,);選手總分為各場得分之和.四場比賽后,已知甲最后得分為16分,乙和丙最后得分都為8分,且乙只有一場比賽獲得了第一名,則下列說法正確的是(

A.每場比賽的第一名得分a4

B.甲至少有一場比賽獲得第二名

C.乙在四場比賽中沒有獲得過第二名

D.丙至少有一場比賽獲得第三名

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若,證明:當(dāng)時,

2)若的極大值點(diǎn),求正實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了解該校學(xué)生停課不停學(xué)的網(wǎng)絡(luò)學(xué)習(xí)效率,隨機(jī)抽查了高一年級100位學(xué)生的某次數(shù)學(xué)成績,得到如圖所示的頻率分布直方圖:

1)估計(jì)這100位學(xué)生的數(shù)學(xué)成績的平均值.(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);

2)根據(jù)整個年級的數(shù)學(xué)成績,可以認(rèn)為學(xué)生的數(shù)學(xué)成績近似地服從正態(tài)分布經(jīng)計(jì)算,(1)問中樣本標(biāo)準(zhǔn)差的近似值為10.用樣本平均數(shù)作為的近似值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值,現(xiàn)任抽取一位學(xué)生,求他的數(shù)學(xué)成績恰在64分到94分之間的概率.

參考數(shù)據(jù):若隨機(jī)變量,則,

3)該年級1班的數(shù)學(xué)老師為了能每天督促學(xué)生的網(wǎng)絡(luò)學(xué)習(xí),提高學(xué)生每天的作業(yè)質(zhì)量及學(xué)習(xí)數(shù)學(xué)的積極性,特意在微信上設(shè)計(jì)了一個每日作業(yè)小程序,每當(dāng)學(xué)生提交的作業(yè)獲得優(yōu)秀時,就有機(jī)會參與一次小程序中玩游戲,得獎勵積分的活動,開學(xué)后可根據(jù)獲得積分的多少領(lǐng)取老師相應(yīng)的小獎品.小程序頁面上有一列方格,共15格,剛開始有只小兔子在第1格,每點(diǎn)一下游戲的開始按鈕,小兔子就沿著方格跳一下,每次跳1格或跳2格,概率均為,依次點(diǎn)擊游戲的開始按鈕,直到小兔子跳到第14格(獎勵0分)或第15格(獎勵5分)時,游戲結(jié)束,每天的積分自動累加,設(shè)小兔子跳到第格的概率為,試證明是等比數(shù)列,并求的值.(獲勝的概率)

查看答案和解析>>

同步練習(xí)冊答案