【題目】某企業(yè)實行裁員增效,已知現(xiàn)有員工人,每人每年可創(chuàng)純收益(已扣工資等)1萬元,據(jù)評估,在生產(chǎn)條件不變的情況下,每裁員一人,則留崗員工每人每年可多創(chuàng)收0.01萬元,但每年需付給下崗工人每位0.4萬元的生活費,并且企業(yè)正常運轉(zhuǎn)所需人數(shù)不得少于現(xiàn)有員工的,設該企業(yè)裁員人后,年純收益為萬元.

(1)寫出關于的函數(shù)關系式,并指出的取值范圍;

(2)當時,該企業(yè)應裁員多少人,才能獲得最大的經(jīng)濟效益(注:在保證能取得最大的經(jīng)濟效益的情況下,能少裁員,應盡量少裁員)?

【答案】(1) ;(2)見解析.

【解析】試題分析:(1)根據(jù)該企業(yè)裁員人后純收益組成,即可得出: , ,即可得出的取值范圍是;
(2)根據(jù)(1)中所得的函數(shù)解析式,考慮當時,分兩類討論:當為偶數(shù)時,當為奇數(shù)時,分析當取何值時, 取最大值,從而確定企業(yè)裁員多少人.

試題解析:

(1)

(2)

為偶數(shù)時, 時, 取得最大值;

為奇數(shù)時, 時, 取得最大值;

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四棱錐中,四邊形是直角梯形, 底面, 的中點, 點在上,且.

(1)證明: 平面

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

求函數(shù)的單調(diào)遞減區(qū)間;

求函數(shù)在區(qū)間上的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù)有如下結(jié)論:

①該函數(shù)為偶函數(shù);

②若,則;

③其單調(diào)遞增區(qū)間是;

④值域是

⑤該函數(shù)的圖象與直線有且只有一個公共點.(本題中是自然對數(shù)的底數(shù))

其中正確的是__________.(請把正確結(jié)論的序號填在橫線上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)滿足:

對任意的, ,當時,有成立;

恒成立.求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本題滿分15分)已知橢圓過點,離心率為.

)求橢圓的標準方程;

)設分別為橢圓的左、右焦點,過的直線與橢圓交于不同兩點,記的內(nèi)切圓的面積為,求當取最大值時直線的方程,并求出最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四棱錐中,四邊形是直角梯形, 底面 的中點, 點在上,且.

(1)證明: 平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,底面是邊長為2的等邊三角形, 的中點.

(1)求證: 平面;

(2)若四邊形是正方形,且,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某中學聯(lián)盟舉行了一次“盟校質(zhì)量調(diào)研考試”活動,為了解本次考試學生的某學科成績情況,從中抽取部分學生的分數(shù)(滿分為分,得分取正整數(shù),抽取學生的分數(shù)均在之內(nèi))作為樣本(樣本容量為)進行統(tǒng)計,按照的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(莖葉圖中僅列出了得分在的數(shù)據(jù))

(Ⅰ)求樣本容量和頻率分布直方圖中的的值;

(Ⅱ)在選取的樣本中,從成績在分以上(含分)的學生中隨機抽取名學生參加“省級學科基礎知識競賽”,求所抽取的名學生中恰有一人得分在內(nèi)的概率.

查看答案和解析>>

同步練習冊答案