【題目】在正方體中,,分別為,的中點,點是上底面內(nèi)一點,且平面,則的最小值是( )
A.B.C.D.
【答案】C
【解析】
設(shè),的中點分別為,,連結(jié),,分別為,的中點,連結(jié)、,交于點,連結(jié),交于,連結(jié),由于點是底面內(nèi)一點,且平面,通過面面平行的判定定理,得出平面平面,
所以點的軌跡為線段,得出當點在的中點時,最短,最大,的最小,則且,從而,由此能求出的最小值.
解:設(shè),的中點分別為,,連結(jié),
在正方形中,,分別為,的中點,
連結(jié)、,交于點,連結(jié),交于,連結(jié),
由于點是底面內(nèi)一點,且平面,
易知,
又平面,平面,
所以平面,同理平面,
又,所以平面平面,
又因為平面平面,
所以點的軌跡為線段.
設(shè)正方形中棱長為1,
由于平面,,
所以點在的中點時,最短,最大,的最小,
且,
,
,
即的最小值是.
故選:C.
科目:高中數(shù)學 來源: 題型:
【題目】 某個集團公司下屬的甲、乙兩個企業(yè)在2014年1月的產(chǎn)值都為a萬元,甲企業(yè)每個月的產(chǎn)值與前一個月相比增加的產(chǎn)值相等,乙企業(yè)每個月的產(chǎn)值與前一個月相比增加的百分數(shù)相等,到2015年1月兩個企業(yè)的產(chǎn)值再次相等.
(1)試比較2014年7月甲、乙兩個企業(yè)產(chǎn)值的大小,并說明理由.
(2)甲企業(yè)為了提高產(chǎn)能,決定投入3.2萬元買臺儀器,并且從2015年2月1日起投入使用.從啟用的第一天起連續(xù)使用,第n天的維修保養(yǎng)費為元(n∈N*),求前n天這臺儀器的日平均耗資(含儀器的購置費),并求日平均耗資最小時使用的天數(shù)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):由表中數(shù)據(jù),求得線性回歸方程為,若從這些樣本中任取一點,則它在回歸直線左下方的概率為______.
單價(元) | 4 | 5 | 6 | 7 | 8 | 9 |
銷量(件) | 90 | 84 | 83 | 80 | 75 | 68 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形ABCD為正方形,為直角三角形,,且.
(1)證明:平面平面;
(2)若AB=2AE,求異面直線BE與AC所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù).
(1)若是的兩個不同零點,是否存在實數(shù),使成立?若存在,求的值;若不存在,請說明理由.
(2)設(shè),函數(shù),存在個零點.
(i)求的取值范圍;
(ii)設(shè)分別是這個零點中的最小值與最大值,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學校高一年級開設(shè)、、、、五門選修課,每位同學須彼此獨立地選三課程,其中甲同學必選課程,不選課程,另從其余課程中隨機任選兩門課程.乙、丙兩名同學從五門課程中隨機任選三門課程.
(Ⅰ)求甲同學選中課程且乙同學未選中課程的概率.
(Ⅱ)用表示甲、乙、丙選中課程的人數(shù)之和,求的分布列和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com