【題目】 某個(gè)集團(tuán)公司下屬的甲、乙兩個(gè)企業(yè)在2014年1月的產(chǎn)值都為a萬(wàn)元,甲企業(yè)每個(gè)月的產(chǎn)值與前一個(gè)月相比增加的產(chǎn)值相等,乙企業(yè)每個(gè)月的產(chǎn)值與前一個(gè)月相比增加的百分?jǐn)?shù)相等,到2015年1月兩個(gè)企業(yè)的產(chǎn)值再次相等.
(1)試比較2014年7月甲、乙兩個(gè)企業(yè)產(chǎn)值的大小,并說(shuō)明理由.
(2)甲企業(yè)為了提高產(chǎn)能,決定投入3.2萬(wàn)元買(mǎi)臺(tái)儀器,并且從2015年2月1日起投入使用.從啟用的第一天起連續(xù)使用,第n天的維修保養(yǎng)費(fèi)為元(n∈N*),求前n天這臺(tái)儀器的日平均耗資(含儀器的購(gòu)置費(fèi)),并求日平均耗資最小時(shí)使用的天數(shù)?
【答案】(1) 到7月份甲企業(yè)的產(chǎn)值比乙企業(yè)的產(chǎn)值要大.(2) 日平均耗資最小時(shí)使用了800天.
【解析】
試題(1)按等差數(shù)列性質(zhì)得2014年7月甲產(chǎn)值,按等比數(shù)列性質(zhì)得2014年7月乙產(chǎn)值,再根據(jù)基本不等式比較兩者大小(2)根據(jù)等差數(shù)列求和公式得n天的維修保養(yǎng)費(fèi)總和,與3.2相加得總費(fèi)用,除以n得日平均耗資,最后根據(jù)基本不等式求最值
試題解析:解:(1)設(shè)從2014年1月到2015年1月甲企業(yè)每個(gè)月的產(chǎn)值分別為a1,a2,a3,…,a13,乙企業(yè)每個(gè)月的產(chǎn)值分別為b1,b2,…,b13.由題意{an}成等差數(shù)列,{bn}成等比數(shù)列,所以a7= (a1+a13),b7=,
因?yàn)?/span>a1=b1,a13=b13,從而a7= (a1+a13)>==b7,
所以到7月份甲企業(yè)的產(chǎn)值比乙企業(yè)的產(chǎn)值要大.
(2)設(shè)一共使用了n天,n天的平均耗資
P(n)==
=
++≥2+= (元),
當(dāng)且僅當(dāng)=時(shí),取得最小值,此時(shí)n=800,即日平均耗資最小時(shí)使用了800天.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,多面體中,為正方形,,二面角的余弦值為,且.
(1)證明:平面平面;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),將函數(shù)的圖象沿軸向左平移個(gè)單位長(zhǎng)度后,又沿軸向上平移1個(gè)單位,再將得到的圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)不變,得到函數(shù)的圖象.
(1)求的對(duì)稱(chēng)中心;
(2)若,求的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】萊市在市內(nèi)主于道北京路一側(cè)修建圓形休閑廣場(chǎng).如圖,圓形廣場(chǎng)的圓心為,半徑為,并與北京路一邊所在直線相切于點(diǎn).點(diǎn)為上半圓弧上一點(diǎn),過(guò)點(diǎn)作的垂線,垂足為點(diǎn).市園林局計(jì)劃在內(nèi)進(jìn)行綠化,設(shè)的面積為(單位:),(單位:弧度).
(1)將表示為的函數(shù);
(2)當(dāng)綠化面積最大時(shí),試確定點(diǎn)的位置,并求最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),是的導(dǎo)數(shù).
(Ⅰ)討論不等式的解集;
(Ⅱ)當(dāng)且時(shí),若在恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某港口有一個(gè)泊位,現(xiàn)統(tǒng)計(jì)了某月100艘輪船在該泊位?康臅r(shí)間(單位:小時(shí)),如果?繒r(shí)間不足半小時(shí)按半小時(shí)計(jì)時(shí),超過(guò)半小時(shí)不足1小時(shí)按1小時(shí)計(jì)時(shí),以此類(lèi)推,統(tǒng)計(jì)結(jié)果如表:
?繒r(shí)間 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 5.5 | 6 |
輪船數(shù)量 | 12 | 12 | 17 | 20 | 15 | 13 | 8 | 3 |
(Ⅰ)設(shè)該月100艘輪船在該泊位的平均?繒r(shí)間為小時(shí),求的值;
(Ⅱ)假定某天只有甲、乙兩艘輪船需要在該泊位停靠小時(shí),且在一晝夜的時(shí)間段中隨機(jī)到達(dá),求這兩艘輪船中至少有一艘在?吭摬次粫r(shí)必須等待的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地電影院為了了解當(dāng)?shù)赜懊詫?duì)快要上映的一部電影的票價(jià)的看法,進(jìn)行了一次調(diào)研,得到了票價(jià)x(單位:元)與渴望觀影人數(shù)y(單位:萬(wàn)人)的結(jié)果如下表:
x(單位:元) | 30 | 40 | 50 | 60 |
y(單位:萬(wàn)人) | 4.5 | 4 | 3 | 2.5 |
(1)若y與x具有較強(qiáng)的相關(guān)關(guān)系,試分析y與x之間是正相關(guān)還是負(fù)相關(guān);
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(3)根據(jù)(2)中求出的線性回歸方程,預(yù)測(cè)票價(jià)定為多少元時(shí),能獲得最大票房收入.
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩(shī)詞知識(shí)競(jìng)賽為主的《中國(guó)詩(shī)詞大會(huì)》火爆熒屏.某機(jī)構(gòu)組織了一場(chǎng)詩(shī)詞知識(shí)競(jìng)賽,將中學(xué)組和大學(xué)組的參賽選手按成績(jī)分為優(yōu)秀、良好、一般三個(gè)等級(jí),從中隨機(jī)抽取100名選手進(jìn)行調(diào)查,如圖是根據(jù)調(diào)查結(jié)果繪制的選手等級(jí)與人數(shù)的條形圖.
(1)若將一般等級(jí)和良好等級(jí)合稱(chēng)為合格等級(jí),根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此判斷能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為選手成績(jī)優(yōu)秀與文化程度有關(guān)?
優(yōu)秀 | 合格 | 總計(jì) | |
大學(xué)組 | |||
中學(xué)組 | |||
總計(jì) |
(2)若參賽選手共6萬(wàn)名,用頻率估計(jì)概率,試估計(jì)其中優(yōu)秀等級(jí)的選手人數(shù);
(3)在優(yōu)秀等級(jí)的選手中選取6名,在良好等級(jí)的選手中選取6名,都依次編號(hào)為1,2,3,4,5,6,在選出的6名優(yōu)秀等級(jí)的選手中任取一名,記其編號(hào)為a,在選出的6名良好等級(jí)的選手中任取一名,記其編號(hào)為b,求使得方程組有唯一一組實(shí)數(shù)解(x,y)的概率.
參考公式:,其中.
參考數(shù)據(jù):
P(K2≥k0) | 0.10 | 0.05 | 0.01 |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體中,,分別為,的中點(diǎn),點(diǎn)是上底面內(nèi)一點(diǎn),且平面,則的最小值是( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com