【題目】已知數(shù)列{an}的前n項和為Sn , 且Sn=2an﹣2(n∈N*),數(shù)列{bn}滿足b1=1,且點P(bn , bn+1)(n∈N*)在直線y=x+2上.
(1)求數(shù)列{an}、{bn}的通項公式;
(2)求數(shù)列{anbn}的前n項和Dn;
(3)設(shè)cn=ansin2 ,求數(shù)列{cn}的前2n項和T2n .
【答案】
(1)解:當(dāng)n=1,a1=2
當(dāng)n≥2時,an=Sn﹣Sn﹣1=2an﹣2an﹣1
∴an=2an﹣1(n≥2),∴{an}是等比數(shù)列,公比為2,首項a1=2
∴
又點 在直線y=x+2上,∴bn+1=bn+2,
∴{bn}是等差數(shù)列,公差為2,首項b1=1,∴bn=2n﹣1
(2)解:∵
∴ ①
②
①﹣②得
=
(3)解:
T2n=(a1+a3+…+a2n﹣1)﹣(b2+b4+…b2n)
=
【解析】(1)利用數(shù)列遞推式,再寫一式,兩式相減,可求求數(shù)列{an}的通項公式;利用點 在直線y=x+2上,可得{bn}是等差數(shù)列,公差為2,首項b1=1,從而可求{bn}的通項公式;(2)利用錯位相減法,可求數(shù)列{anbn}的前n項和Dn;(3)利用分組求和法,可求數(shù)列{cn}的前2n項和T2n .
【考點精析】掌握數(shù)列的前n項和是解答本題的根本,需要知道數(shù)列{an}的前n項和sn與通項an的關(guān)系.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【蘇北三市(連云港、徐州、宿遷)2017屆高三年級第三次調(diào)研考試】某景區(qū)修建一棟復(fù)古建筑,其窗戶設(shè)計如圖所示.圓的圓心與矩形對角線的交點重合,且圓與矩形上下兩邊相切(為上切點),與左右兩邊相交(,為其中兩個交點),圖中陰影部分為不透光區(qū)域,其余部分為透光區(qū)域.已知圓的半徑為1,且,設(shè),透光區(qū)域的面積為.
(1)求關(guān)于的函數(shù)關(guān)系式,并求出定義域;
(2)根據(jù)設(shè)計要求,透光區(qū)域與矩形窗面的面積比值越大越好.當(dāng)該比值最大時,求邊的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 Sn是數(shù)列{an}的前n項和,且Sn=2an+n﹣4.
(1)求a1的值;
(2)若bn=an﹣1,試證明數(shù)列{bn}為等比數(shù)列;
(3)求數(shù)列{an}的通項公式,并證明: + +…+ <1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過點A(1,3)、B(2,2),并且直線m:3x﹣2y=0平分圓C.
(1)求圓C的方程;
(2)若過點D(0,1),且斜率為k的直線l與圓C有兩個不同的交點M、N.
(Ⅰ)求實數(shù)k的取值范圍;
(Ⅱ)若 =12,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 ,函數(shù)f(x)= +2.
(1)求函數(shù)f(x)的最小正周期;
(2)設(shè)銳角△ABC內(nèi)角A,B,C所對的邊分別為a,b,c,若f(A)=2, ,求角A和邊c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A(x1 , y1),B(x2 , y2)是函數(shù)f(x)= 的圖象上的任意兩點(可以重合),點M在直線x= 上,且 = .
(1)求x1+x2的值及y1+y2的值;
(2)已知S1=0,當(dāng)n≥2時,Sn=f( )+f( )+f( )+…+f( ),求Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sinxcosx﹣sin2x+ .
(1)求f(x)的最小正周期值;
(2)求f(x)的單調(diào)遞增區(qū)間;
(3)求f(x)在[0, ]上的最值及取最值時x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把函數(shù)f(x)=sin(2x+φ)(|φ|< )的圖象上的所有點向左平移 個單位長度,得到函數(shù)y=g(x)的圖象,且g(﹣x)=g(x),則( )
A.y=g(x)在(0, )單調(diào)遞增,其圖象關(guān)于直線x= 對稱
B.y=g(x)在(0, )單調(diào)遞增,其圖象關(guān)于直線x= 對稱
C.y=g(x)在(0, )單調(diào)遞減,其圖象關(guān)于直線x= 對稱
D.y=g(x)在(0, )單調(diào)遞減,其圖象關(guān)于直線x= 對稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),已知定義在R上的函數(shù)在區(qū)間內(nèi)有一個零點, 為的導(dǎo)函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)設(shè),函數(shù),求證: ;
(Ⅲ)求證:存在大于0的常數(shù),使得對于任意的正整數(shù),且 滿足.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com