“拋階磚”是國(guó)外游樂(lè)場(chǎng)的典型游戲之一.參與者只須將手上的“金幣”(設(shè)“金幣”的半徑為1)拋向離身邊若干距離的階磚平面上,拋出的“金幣”若恰好落在任何一個(gè)階磚(邊長(zhǎng)為2.1的正方形)的范圍內(nèi)(不與階磚相連的線重疊),便可獲大獎(jiǎng).不少人被高額獎(jiǎng)金所吸引,紛紛參與此游戲但很少有人得到獎(jiǎng)品,請(qǐng)用所學(xué)的概率知識(shí)解釋這是為什么.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知關(guān)于的一次函數(shù)
(1)設(shè)集合和,分別從集合和中隨機(jī)取一個(gè)數(shù)作為,,求函數(shù)是增函數(shù)的概率;
(2)若實(shí)數(shù),滿足條件,求函數(shù)的圖象不經(jīng)過(guò)第四象限的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
A、B兩個(gè)投資項(xiàng)目的利潤(rùn)率分別為隨機(jī)變量X1和X2,根據(jù)市場(chǎng)分析,X1和X2的分布列分別為
X1 | 5% | 10% |
P | 0.8 | 0.2 |
X2 | 2% | 8% | 12% |
P | 0.2 | 0.5 | 0.3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某校組織一次冬令營(yíng)活動(dòng),有8名同學(xué)參加,其中有5名男同學(xué),3名女同學(xué),為了活動(dòng)的需要,要從這8名同學(xué)中隨機(jī)抽取3名同學(xué)去執(zhí)行一項(xiàng)特殊任務(wù),記其中有X名男同學(xué).
(1)求X的分布列;
(2)求去執(zhí)行任務(wù)的同學(xué)中有男有女的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)連續(xù)擲兩次骰子得到的點(diǎn)數(shù)分別為m、n,令平面向量a=(m,n),b=(1,-3).
(1) 求使得事件“a⊥b”發(fā)生的概率;
(2) 求使得事件“|a|≤|b|”發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某籃球運(yùn)動(dòng)員在最近幾場(chǎng)大賽中罰球投籃的結(jié)果如下:
投籃次數(shù)n | 8 | 10 | 12 | 9 | 10 | 16 |
進(jìn)球次數(shù)m | 6 | 8 | 9 | 7 | 7 | 12 |
進(jìn)球頻率m/n | | | | | | |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
甲、乙、丙三個(gè)車(chē)床加工的零件分別為350個(gè),700個(gè),1050個(gè),現(xiàn)用分層抽樣的方法隨機(jī)抽取6個(gè)零件進(jìn)行檢驗(yàn).
(1)從抽取的6個(gè)零件中任意取出2個(gè),已知這兩個(gè)零件都不是甲車(chē)床加工的,求其中至少有一個(gè)是乙車(chē)床加工的零件;
(2)從抽取的6個(gè)零件中任意取出3個(gè),記其中是乙車(chē)床加工的件數(shù)為X,求X的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
袋中裝有大小相同的黑球和白球共個(gè),從中任取個(gè)都是白球的概率為.現(xiàn)甲、乙兩人從袋中輪流摸球,甲先取,乙后取,然后甲再取 ,每次摸取個(gè)球,取出的球不放回,直到其中有一人取到白球時(shí)終止.用表示取球終止時(shí)取球的總次數(shù).
(1)求袋中原有白球的個(gè)數(shù);
(2)求隨機(jī)變量的概率分布及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
甲、乙、丙三人參加某次招聘會(huì),假設(shè)甲能被聘用的概率是,甲、丙兩人同時(shí)不能被聘用的概率是,乙、丙兩人同時(shí)能被聘用的概率為,且三人各自能否被聘用相互獨(dú)立.
(1)求乙、丙兩人各自被聘用的概率;
(2)設(shè)為甲、乙、丙三人中能被聘用的人數(shù)與不能被聘用的人數(shù)之差的絕對(duì)值,求的分布列與均值(數(shù)學(xué)期望).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com