【題目】已知橢圓的一個頂點為,右焦點為,且,其中為原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點滿足,點在橢圓上(異于橢圓的頂點),直線與以為圓心的圓相切于點,且為線段的中點.求直線的方程.
【答案】(Ⅰ);(Ⅱ),或.
【解析】
(Ⅰ)根據(jù)題意,并借助,即可求出橢圓的方程;
(Ⅱ)利用直線與圓相切,得到,設出直線的方程,并與橢圓方程聯(lián)立,求出點坐標,進而求出點坐標,再根據(jù),求出直線的斜率,從而得解.
(Ⅰ)橢圓的一個頂點為,
,
由,得,
又由,得,
所以,橢圓的方程為;
(Ⅱ)直線與以為圓心的圓相切于點,所以,
根據(jù)題意可知,直線和直線的斜率均存在,
設直線的斜率為,則直線的方程為,即,
,消去,可得,解得或.
將代入,得,
所以,點的坐標為,
因為為線段的中點,點的坐標為,
所以點的坐標為,
由,得點的坐標為,
所以,直線的斜率為,
又因為,所以,
整理得,解得或.
所以,直線的方程為或.
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列的前項和為,且.
(1)求證:數(shù)列為等比數(shù)列;
(2)設數(shù)列的前項和為,求證: 為定值;
(3)判斷數(shù)列中是否存在三項成等差數(shù)列,并證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在3世紀中期,我國古代數(shù)學家劉徽在《九章算術注》中提出了割圓術:“割之彌細,所失彌少,割之又割,以至于不可割,則與圓合體,而無所失矣”.這可視為中國古代極限觀念的佳作.割圓術可以視為將一個圓內接正邊形等分成個等腰三角形(如圖所示),當變得很大時,等腰三角形的面積之和近似等于圓的面積.運用割圓術的思想,可得到sin3°的近似值為( )(取近似值3.14)
A.0.012B.0.052
C.0.125D.0.235
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在邊長為4的正三角形中,E為邊的中點,過E作于D.把沿翻折至的位置,連結.翻折過程中,其中正確的結論是( )
A.;
B.存在某個位置,使;
C.若,則的長是定值;
D.若,則四面體的體積最大值為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】空氣質量指數(shù)PM2.5(單位:)表示每立方米空氣中可入肺顆粒物的含量,這個值越高,就代表空氣污染越嚴重:
PM2.5 日均濃度 | 0~35 | 35~75 | 75~115 | 115~150 | 150~250 | |
空氣質量級別 | 一級 | 二級 | 三級 | 四級 | 五級 | 六級 |
空氣質量類型 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴重污染 |
甲乙兩城市2020年5月份中的15天對空氣質量指數(shù)PM2.5進行監(jiān)測,獲得PM2.5日均濃度指數(shù)數(shù)據(jù)如莖葉圖所示:
(1)根據(jù)你所學的統(tǒng)計知識估計甲乙兩城市15天內哪個城市空氣質量總體較好?并簡要說明理由.
(2)在15天內任取1天,估計甲乙兩城市空氣質量類別均為優(yōu)或良的概率;
(3)在乙城市15個監(jiān)測數(shù)據(jù)中任取2個,設為空氣質量類別為優(yōu)或良的天數(shù),求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)(,)的部分圖象如圖所示,則下列結論正確的是( )
A.
B.若把函數(shù)的圖像向左平移個單位,則所得函數(shù)是奇函數(shù)
C.若把的橫坐標縮短為原來的倍,縱坐標不變,得到的函數(shù)在上是增函數(shù)
D.,若恒成立,則的最小值為
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com