【題目】已知函數(shù).

(1)若曲線在點處的切線與直線垂直,求函數(shù)的單調區(qū)間;

(2)若對于任意都有成立,試求的取值范圍;

(3)記.時,函數(shù)在區(qū)間上有兩個零點,求實數(shù)的取值范圍。

【答案】1)單調增區(qū)間是,單調減區(qū)間是.23

【解析】

(1)先由導數(shù)的幾何意義求得a,在定義域內,再求出導數(shù)大于0的區(qū)間,即為函數(shù)的增區(qū)間,求出導數(shù)小于0的區(qū)間即為函數(shù)的減區(qū)間.

(2)根據函數(shù)的單調區(qū)間求出函數(shù)的最小值,要使fx)>2(a﹣1)恒成立,需使函數(shù)的最小值大于2(a﹣1),從而求得a的取值范圍.

(3)利用導數(shù)的符號求出單調區(qū)間,再根據函數(shù)gx)在區(qū)間[e﹣1,e]上有兩個零點,得到, 解出實數(shù)b的取值范圍.

(1)直線的斜率為1, 函數(shù))的定義域為.

因為,所以,所以

所以,.

解得;由解得.

所以得單調增區(qū)間是,單調減區(qū)間是.

(2)解得;由解得.

所以在區(qū)間上單調遞增,在區(qū)間上單調遞減,

所以當時,函數(shù)取得最小值.

因為對于任意都有成立,

所以即可.

,

,解得,

所以得取值范圍是.

(3)依題意得,則,

解得,由解得.

所以函數(shù)在區(qū)間上有兩個零點,

所以,解得.

所以的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某工廠有兩個車間生產同一種產品,第一車間有工人200人,第二車間有工人400人,為比較兩個車間工人的生產效率,采用分層抽樣的方法抽取工人,并對他們中每位工人生產完成一件產品的時間(單位:min)分別進行統(tǒng)計,得到下列統(tǒng)計圖表(按照[5565),[65,75),[7585),[85,95]分組).

分組

頻數(shù)

[5565

2

[65,75

4

[75,85

10

[85,95]

4

合計

20

第一車間樣本頻數(shù)分布表

(Ⅰ)分別估計兩個車間工人中,生產一件產品時間小于75min的人數(shù);

(Ⅱ)分別估計兩車間工人生產時間的平均值,并推測哪個車間工人的生產效率更高?(同一組中的數(shù)據以這組數(shù)據所在區(qū)間中點的值作代表)

(Ⅲ)從第一車間被統(tǒng)計的生產時間小于75min的工人中,隨機抽取3人,記抽取的生產時間小于65min的工人人數(shù)為隨機變量X,求X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有一片產量很大的水果種植園,在臨近成熟時隨機摘下某品種水果100個,其質量(均在l11kg)頻數(shù)分布表如下(單位: kg):

分組

頻數(shù)

10

15

45

20

10

以各組數(shù)據的中間值代表這組數(shù)據的平均值,將頻率視為概率.

1)由種植經驗認為,種植園內的水果質量近似服從正態(tài)分布,其中近似為樣本平均數(shù)近似為樣本方差.請估算該種植園內水果質量在內的百分比;

2)現(xiàn)在從質量為 的三組水果中用分層抽樣方法抽取14個水果,再從這14個水果中隨機抽取3個.若水果質量的水果每銷售一個所獲得的的利潤分別為2元,4元,6元,記隨機抽取的3個水果總利潤為元,求的分布列及數(shù)學期望.

附: ,則.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,其中

討論函數(shù)的圖象的交點個數(shù);

若函數(shù)的圖象無交點,設直線與的數(shù)的圖象分別交于點P,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,對于,均有,則實數(shù)的取值范圍是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調區(qū)間和零點;

(2)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓,左、右焦點分別為,,右頂點為,上頂點為,為橢圓上在第一象限內一點.

1)若

①求橢圓的離心率;

②求直線的斜率.

2)若,成等差數(shù)列,且,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知各項均為正數(shù)的等比數(shù)列的公比,且,是方程的兩根,記的前n項和為.

1)若,,依次成等差數(shù)列,求m的值;

2)設,數(shù)列的前n項和為,若,求n的最小值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線:,拋物線圖象上的一動點到直線與到軸距離之和的最小值為__________,到直線距離的最小值為__________

查看答案和解析>>

同步練習冊答案