【題目】在平面直角坐標系中,己知圓,且圓被直線截得的弦長為2.

(1)求圓的標準方程;

(2)若圓的切線軸和軸上的截距相等,求切線的方程;

(3)若圓上存在點,由點向圓引一條切線,切點為,且滿足,求實數(shù)的取值范圍.

【答案】(1);(2);(3)

【解析】

1)將圓方程整理為標準方程形式,可知,得到圓心坐標和半徑;由垂徑定理可利用弦長構(gòu)造出關(guān)于的方程,解方程求得,從而得到標準方程;(2)分為直線過原點和不過原點兩種情況,分別假設(shè)直線方程,利用圓心到直線距離等于半徑可構(gòu)造方程求得結(jié)果;(3)設(shè),根據(jù)可整理出點軌跡方程為:;根據(jù)在圓上,則兩圓有公共點,根據(jù)圓與圓位置關(guān)系的判定可構(gòu)造不等式,解不等式求得結(jié)果.

1)圓方程可整理為:

的圓心坐標為,半徑

圓心到直線的距離:

截得的弦長為:,解得:

的標準方程為:

(2)①若直線過原點,可假設(shè)直線方程為:,即

直線與圓相切 圓心到直線距離,解得:

切線方程為:

②若直線不過原點,可假設(shè)直線方程為:,即

圓心到直線距離,解得:

切線方程為

綜上所述,切線方程為

(3)假設(shè)

,即

又直線與圓相切,切點為

即:,整理得:

又在圓兩圓有公共點

,解得:

的取值范圍為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

1)當時,求不等式的解集;

2)若時,不等式恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】貨車欲以xkm/h的速度行駛,去130km遠的某地,按交通法規(guī),限制x的允許范圍是50x100,假設(shè)汽油的價格為2元/升,而汽車耗油的速率是升/小時.司機的工資是14元/小時,試問最經(jīng)濟的車速是多少?這次行車往返的總費用最低是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A. “f(0)”是“函數(shù)f(x)是奇函數(shù)”的充要條件

B. p:,,則,

C. “若,則”的否命題是“若,則

D. 為假命題,則p,q均為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班級有3名同學(xué)報名參加學(xué)校組織的辯論賽,現(xiàn)有甲、乙兩個辨題可以選擇,學(xué)校決定讓選手以抽取卡片(除上面標的數(shù)不同外其他完全相同)的方式選擇辯題,且每名選手抽取后放回.已知共有10張卡片,卡片上分別標有10個數(shù).若抽到卡片上的數(shù)為質(zhì)數(shù)(2,3,57),則選擇甲辨題,否則選擇乙辯題.

1)求這3名同學(xué)中至少有1人選擇甲辨題的概率.

2)用XY分別表示這3名同學(xué)中選擇甲、乙辨題的人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當時,討論函數(shù)的單調(diào)性.

2)當時,證明:對任意的,有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】撫州市某中學(xué)利用周末組織教職員工進行了一次秋季登軍峰山健身的活動,有人參加,現(xiàn)將所有參加人員按年齡情況分為,,,,等七組,其頻率分布直方圖如下圖所示.已知之間的參加者有4人.

1)求之間的參加者人數(shù);

2)組織者從之間的參加者(其中共有名女教師包括甲女,其余全為男教師)中隨機選取名擔任后勤保障工作,求在甲女必須入選的條件下,選出的女教師的人數(shù)為2人的概率.

3)已知之間各有名數(shù)學(xué)教師,現(xiàn)從這兩個組中各選取人擔任接待工作,設(shè)兩組的選擇互不影響,求兩組選出的人中都至少有名數(shù)學(xué)教師的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的三個頂點分別為A(﹣3,0),B21),C(﹣23),試求:

1)邊AC所在直線的方程;

2BC邊上的中線AD所在直線的方程;

3BC邊上的高AE所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】珠海市某學(xué)校的研究性學(xué)習(xí)小組,對晝夜溫差(最高溫度與最低溫度的差)大小與綠豆種子一天內(nèi)出芽數(shù)之間的關(guān)系進行了研究,該小組在4月份記錄了1日至6日每天晝夜最高、最低溫度(如圖1),以及浸泡的顆綠豆種子當天內(nèi)的出芽數(shù)(如圖2)

已知綠豆種子出芽數(shù)(顆) 和溫差具有線性相關(guān)關(guān)系.

(1)求綠豆種子出芽數(shù) (顆)關(guān)于溫差的回歸方程;

(2)假如4月1日至7日的日溫差的平均值為,估計4月7日浸泡的顆綠豆種子一天內(nèi)的出芽數(shù).

附:,.

查看答案和解析>>

同步練習(xí)冊答案