【題目】某書店剛剛上市了《中國古代數(shù)學史》,銷售前該書店擬定了5種單價進行試銷,每種單價(元)試銷l天,得到如表單價(元)與銷量(冊)數(shù)據(jù):

單價(元)

18

19

20

21

22

銷量(冊)

61

56

50

48

45

(l)根據(jù)表中數(shù)據(jù),請建立關于的回歸直線方程:

(2)預計今后的銷售中,銷量(冊)與單價(元)服從(l)中的回歸方程,已知每冊書的成本是12元,書店為了獲得最大利潤,該冊書的單價應定為多少元?

附:,,.

【答案】(1) (2) 當單價應定為22.5元時,可獲得最大利潤

【解析】

(l)先計算的平均值,再代入公式計算得到

(2)計算利潤為:計算最大值.

解:(1)

,

,

所以的回歸直線方程為:

(2)設獲得的利潤為

,

因為二次函數(shù)的開口向下,

所以當時,取最大值,

所以當單價應定為22.5元時,可獲得最大利潤.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是(
A.命題“?x∈R,2x>0”的否定是“?x0∈R,2 <0”
B.命題“若sinx=siny,則x=y”的逆否命題為真命題
C.若命題p,¬q都是真命題,則命題“p∧q”為真命題
D.命題“若△ABC為銳角三角形,則有sinA>cosB”是真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高校從參加今年自主招生考試的學生中隨機抽取容量為的學生成績樣本,得頻率分布表如下:

組號

分組

頻率

頻數(shù)

第一組

第二組

第三組

第四組

第五組

合計

1)寫出表中①、②位置的數(shù)據(jù);

2)估計成績不低于分的學生約占多少;

3)為了選拔出更優(yōu)秀的學生,高校決定在第三、四、五組中用分層抽樣法抽取名學生進行第二輪考核,分別求第三、四、五各組參加考核的人數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在矩形,E為的中點,將沿翻折到的位置,平面,的中點,則在翻折過程中,下列結(jié)論正確的是( )

A.恒有 平面

B.B與M兩點間距離恒為定值

C.三棱錐的體積的最大值為

D.存在某個位置,使得平面⊥平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)時,,求的最大整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-5:不等式選講]

已知函數(shù)

(1)解不等式:;

(2)對任意,恒成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在中,,,分別是,中點,,.現(xiàn)將沿折起,如圖2所示,使二面角,的中點.

1)求證:面

2)求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

已知是遞增數(shù)列,其前項和為,,且,

)求數(shù)列的通項;

)是否存在使得成立?若存在,寫出一組符合條件的的值;若不存在,請說明理由;

)設,若對于任意的,不等式

恒成立,求正整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4﹣4:極坐標與參數(shù)方程
極坐標系與直角坐標系xOy有相同的長度單位,以原點O為極點,以x軸正半軸為極軸.已知曲線C1的極坐標方程為 ,曲線C2的極坐標方程為ρsinθ=a(a>0),射線 , 與曲線C1分別交異于極點O的四點A,B,C,D.
(Ⅰ)若曲線C1關于曲線C2對稱,求a的值,并把曲線C1和C2化成直角坐標方程;
(Ⅱ)求|OA||OC|+|OB||OD|的值.

查看答案和解析>>

同步練習冊答案