【題目】天水市第一次聯(lián)考后,某校對(duì)甲、乙兩個(gè)文科班的數(shù)學(xué)考試成績(jī)進(jìn)行分析,
規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計(jì)成績(jī)后,
得到如下的列聯(lián)表,且已知在甲、乙兩個(gè)文科班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為.
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
甲班 | 10 | ||
乙班 | 30 | ||
合計(jì) | 110 |
(1)請(qǐng)完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認(rèn)為“成績(jī)與班級(jí)有關(guān)系”;
(3)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人:把甲班優(yōu)秀的10名學(xué)生從2到11進(jìn)行編號(hào),先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點(diǎn)數(shù)之和為被抽取人的序號(hào)。試求抽到9號(hào)或10號(hào)的概率。
參考公式與臨界值表:。
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
【答案】(1)
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
甲班 | 10 | 50 | 60 |
乙班 | 20 | 30 | 50 |
合計(jì) | 30 | 80 | 110 |
(2)計(jì)算得到K2= ≈7.487<10.828.因此按99.9%的可靠性要求,不能認(rèn)為“成績(jī)與班級(jí)有關(guān)系”
(3)抽到9號(hào)或10號(hào)的概率為.
【解析】
試題分析:
思路分析:此類(lèi)問(wèn)題(1)(2)直接套用公式,經(jīng)過(guò)計(jì)算“卡方”,與數(shù)表對(duì)比,作出結(jié)論。(3)是典型的古典概型概率的計(jì)算問(wèn)題,確定兩個(gè)“事件”數(shù),確定其比值。
解:(1) 4分
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
甲班 | 10 | 50 | 60 |
乙班 | 20 | 30 | 50 |
合計(jì) | 30 | 80 | 110 |
(2)根據(jù)列聯(lián)表中的數(shù)據(jù),得到K2= ≈7.487<10.828.因此按99.9%的
可靠性要求,不能認(rèn)為“成績(jī)與班級(jí)有關(guān)系” 8分
(3)設(shè)“抽到9或10號(hào)”為事件A,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點(diǎn)數(shù)為(x,y).所有的基本事件有:(1,1)、(1,2)、(1,3)、…、(6,6)共36個(gè).事件A包含的基本事件有:(3,6)、(4,5)、(5,4)、(6,3)、(5,5)、(4,6)(6,4)共7個(gè).所以P(A)= ,即抽到9號(hào)或10號(hào)的概率為. 12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】化為推出一款6寸大屏手機(jī),現(xiàn)對(duì)500名該手機(jī)使用者(200名女性,300名男性)進(jìn)行調(diào)查,對(duì)手機(jī)進(jìn)行打分,打分的頻數(shù)分布表如下:
女性用戶:
分值區(qū)間 | |||||
頻數(shù) | 20 | 40 | 80 | 50 | 10 |
男性用戶:
分值區(qū)間 | |||||
頻數(shù) | 45 | 75 | 90 | 60 | 30 |
(1)如果評(píng)分不低于70分,就表示該用戶對(duì)手機(jī)“認(rèn)可”,否則就表示“不認(rèn)可”,完成下列列聯(lián)表,并回答是否有的把握認(rèn)為性別對(duì)手機(jī)的“認(rèn)可”有關(guān):
女性用戶 | 男性用戶 | 合計(jì) | |
“認(rèn)可”手機(jī) | |||
“不認(rèn)可”手機(jī) | |||
合計(jì) |
附:
0.05 | 0.01 | |
3.841 | 6.635 |
(2)根據(jù)評(píng)分的不同,運(yùn)用分層抽樣從男性用戶中抽取20名用戶,在這20名用戶中,從評(píng)分不低于80分的用戶中任意抽取2名用戶,求2名用戶中評(píng)分小于90分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量, .設(shè) (t為實(shí)數(shù)).
(Ⅰ)若,求當(dāng)取最小值時(shí)實(shí)數(shù)t的值;
(Ⅱ)若⊥,問(wèn):是否存在實(shí)數(shù)t,使得向量-和向量的夾角為,若存在,請(qǐng)求出t;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),函數(shù)與的圖象有三個(gè)不同的交點(diǎn),求實(shí)數(shù)的范圍;
(2)討論的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù)f(x)=|2x+1|+|2x-a|.
(I)若f(x)的最小值為2,求a的值;
(II)若f(x)≤|2x-4|的解集包含[-2,-1],求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(其中為自然對(duì)數(shù)的底數(shù),).
(1)若僅有一個(gè)極值點(diǎn),求的取值范圍;
(2)證明:當(dāng)時(shí),有兩個(gè)零點(diǎn),且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知全集U=R,A={x|x2﹣2x﹣3≤0},B={x|2≤x<5},C={x|x>a}.
(1)求A∩(UB);
(2)若A∪C=C,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形為菱形,四邊形為平行四邊形,設(shè)與相交于點(diǎn),.
(1)證明:平面平面;
(2)若,求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com